基于EMD和CICA的单通道盲源分离方法用于齿轮箱混合故障诊断研究

郝如江,安雪君,史云林

振动与冲击 ›› 2019, Vol. 38 ›› Issue (8) : 225-231.

PDF(2261 KB)
PDF(2261 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (8) : 225-231.
论文

基于EMD和CICA的单通道盲源分离方法用于齿轮箱混合故障诊断研究

  • 郝如江,安雪君,史云林
作者信息 +

Single-channel blind source separation based on EMD and CICA and its application to gearbox multi-fault diagnosis

  • HAO Rujiang, AN Xuejun, SHI Yunlin
Author information +
文章历史 +

摘要

针对传统的独立分量分析难以解决齿轮箱混合故障诊断中存在的欠定盲分离问题,提出了基于EMD和CICA(约束独立分量分析)的单通道盲源分离方法。通过单通道加速度传感器采集齿轮箱混合故障信号,对其进行EMD分解以实现降噪及单通道扩展,采用基于白噪声统计特性和峭度值结合的方法选取有效的IMF分量,将其作为盲源分离的输入信号,然后通过CICA方法提取目标振动信号,识别故障特征。通过对齿轮箱轴承与齿轮混合故障的仿真及实验研究,验证了该方法的有效性和可行性。

Abstract

Considering that the traditional independent component analysis is too difficult to solve the problems of underdetermined blind source separation (BSS) in gearbox multi-fault diagnosis, a single-channel blind source separation method based on empirical mode decomposition (EMD) and constrained independent component analysis (CICA) was proposed.Gearbox multi-fault signal was collected by a single-channel acceleration sensor, and it was decomposed by the EMD method to achieve noise reduction and single channel expansion.By virtue of the characteristics of white noise and kurtosis value, the effective IMF components were selected, which was treated as input signals for the BBS.The target vibration signal was extracted by the CICA method to identify the fault feature.A case study on gearbox bearing and gear multi-fault simulations and experiments verifies the effectiveness and feasibility of the proposed method.

关键词

盲源分离 / 经验模态分解 / 约束独立分量分析 / 混合故障诊断

Key words

blind source separation / empirical mode decomposition / constrained independent component analysis / multi-fault diagnosis

引用本文

导出引用
郝如江,安雪君,史云林. 基于EMD和CICA的单通道盲源分离方法用于齿轮箱混合故障诊断研究[J]. 振动与冲击, 2019, 38(8): 225-231
HAO Rujiang, AN Xuejun, SHI Yunlin. Single-channel blind source separation based on EMD and CICA and its application to gearbox multi-fault diagnosis[J]. Journal of Vibration and Shock, 2019, 38(8): 225-231

参考文献

[1] 雷亚国, 孔德东, 李乃鹏, 等. 自适应总体平均经验模式分解及其在行星齿轮箱故障检测中的应用[J]. 机械工程学报, 2014, 50(3):64-70.
Lei Yaguo, Kong Detong, Li Naipeng, et al. Adaptive ensemble empirical mode decomposition and its application to fault detection of planetary gearboxes[J]. Journal of Mechanical Engineering, 2014, 50(3):64-70.
[2] Li Hui, Zhang Yuping, Zheng Haiqi. Application of hermitian wavelet to crack fault detection in gearbox[J]. Mechanical Systems and Signal Processing, 2011, 25(4):1353-1363.
[3] 张亢, 程军圣, 杨宇. 基于局部均值分解的阶次跟踪分析及其在齿轮故障诊断中的应用[J]. 中国机械工程, 2011, 22(14):1731-1736.
Zhang Kang, Cheng Junsheng, Yang Yu. Order tracting analysis based on local decomposition and its application to gear fault diagnosis[J]. China Mechanical Engineering, 2011, 22(14):1731-1736.
[4] 樊永生. 机械设备诊断的现代信号处理方法[M]. 北京:国防工业出版社, 2009.
Fan Yongsheng. Modern signal processing method for mechanical equipment diagnosis[M]. Beijing:National Defense Industry Press, 2009.
[5] 秦亮, 石林锁, 张亚洲. 基于盲信号提取的机械振动信号消噪方法研究[J]. 电子测量技术, 2009, 32(2):4-6.
Qin Liang, Shi Linsuo, Zhang Yazhou. Research of the noise removal method for mechanical vibration signal based on blind signal extraction[J]. Electronic Measurement Technology, 2009, 32(2):4-6.
[6] Wei Lu, Jagath C Rajapakse. ICA with reference[J]. Neuro Computing, 2006, 69(3): 2244-2257.
[7] WANG Z Y, CHEN J, DONG G M, et al. Constrained independent component analysis and its application to machine fault diagnosis[J]. Mechanical Systems and Signal Processing, 2011, 25: 2501-2512.
[8] 吴川辉, 郭瑜, 梁瑜. 基于CICA的旋转机械变速过程滚动轴承故障特征提取[J]. 机械科学与技术, 2013, 32(8): 1176-1181.
Wu Chuanhui, Guo Yu, Liang Yu. Extracting fault features of rolling bearing during speed variation based on cICA[J]. Mechanical Science and Technology, 2013, 32(8): 1176-1181.
[9] 梁瑜, 郭瑜, 吴川辉. 基于谱峭度和CICA的滚动轴承故障特征提取[J]. 机械强度, 2013, 35(5) : 559-565.
Liang Yu, Guo Yu, Wu Chuanhui. Rolling element bearing fault feature extraction based on spectral kurtosis and cICA[J]. Journal of Mechanical Strength, 2013, 35(5) : 559-565.
[10] Huang N E, Shen Z, Long SR, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis[J]. Proceeding of Royal Society London A, 1998, (454):903-995.
[11] WU Zhaohua, HUANG N E. A study of the characteristics of white noise using the empirical mode decomposition method[J]. Proc. R. Soc. Lond.A, 2004, 460:1597-1611.
[12] 张杰, 张周锁, 朱冠汶, 等. 多元消减约束独立分量分析及其在振源贡献量计算中的应用[J]. 机械工程学报, 2014, 50(5) : 57-73.
Zhang Jie, Zhang Zhousuo, Zhu Guanwen et al. Multi-unit deflation constraint independent component analysis and its application to source contribution estimation[J]. Journal of Mechanical Engineering, 2014, 50(5) : 57-73.
 
 

PDF(2261 KB)

Accesses

Citation

Detail

段落导航
相关文章

/