针对对称差分能量算子对噪声和振动干扰较为敏感的不足,在其基础上提出了对称差分解析能量算子。对称差分解析能量算子在很大程度上克服了噪声和振动干扰的影响,能从重度污染的信号中提取出微弱的故障信号频率,因此具有更强的鲁棒性。将该方法应用于模拟实验和真实轴承故障诊断实验中,并且与对称差分能量算子和传统能量算子进行对比,该方法取得了良好的诊断效果,体现了优越性。因此,将该方法应用于故障诊断领域,尤其是工作背景复杂的环境下,有着很大的实际意义。
Abstract
An alternative energy operator, analytic energy operator of symmetrical differencing was proposed.The improved demodulation technique was developed based on the energy operator of symmetrical differencing. The energy operator of symmetrical differencing is sensitive to noise and vibration interferences, so its application is limited in some fields.However, the analytic energy operator of symmetrical differencing is able to detect the weak fault signatures from the heavily contaminated signals.Thus, it is more robust than the energy operator of symmetrical differencing.The results of simulation test and bearing fault experiments demonstrate that the novel method can effectively extract fault features, certifying its superiority in comparison with previous methods.Therefore, it is likely to be useful and practical in the fault detection area, especially under the condition of strong noise and vibration interferences.
关键词
故障诊断 /
滚动轴承 /
对称差分能量算子 /
对称差分解析能量算子
{{custom_keyword}} /
Key words
fault diagnosis /
rolling bearing /
energy operator of symmetrical differencing /
analytic energy operator of symmetrical differencing
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 高晋占.微弱信号检测[M]. 北京:清华大学出版社,2004.
GAO Jin-zhan. The weak signal detection[M]. Beijing: TsingHua university press, 2004.
[2] 刘红星,等.能量算子解调方法及其在机械信号解调中的应用[J]. 机械工程学报,1998,34(5):85-89.
LIU Hong-xing, et al. Energy operator demodulation approach and its application in mechanical signal demodulations[J]. Journal of Mechanical Engineering, 1998, 34(5): 85-89.
[3] 张文义, 于德介, 陈向民. 齿轮箱复合故障诊断的信号共振分量能量算子解调方法[J]. 振动工程学报, 2015, 28(1):148-155.
ZHANG Yi-wen, YU De-jie,CHEN Xiangm-min. Energy operator demodulating of signal's resonance components for the compound fault diagnosis of gearbox[J]. Journal of Vibration Engineering, 2015, 28(1):148-155.
[4] 王天金, 冯志鹏, 郝如江,等. 基于Teager能量算子的滚动轴承故障诊断研究[J]. 振动与冲击, 2012, 31(2):1-5.
WANG Tian-jin, FENG Zhi-peng, HAO Ru-jiang, et al. Fault diag-nosis of rolling element bearings based on teager energy operator[J]. Journal of Vibration and shock, 2012, 31(2):1-5.
[5] Agarwal R, Gotman J. Adaptive segmentation of electroenceph-alographic data using a nonlinear energy operator[C]// IEEE Int- ernational Symposium on Circuits and Systems. IEEE, 1999:199-202 vol.4.
[6] 孟宗, 李姗姗, 季艳. 基于对称差分能量算子解调的局部均值分解端点效应抑制方法[J]. 机械工程学报, 2014, 50(13):80-87.
MENG Zong, LI San-shan, Ji Yan. Restraining Method for End E-ffect of Local Mean Decomposition Based on Energy Operator De- modulation of Symmetrical Differencing[J]. Journal of Mechanical Engineering, 2014, 50(13):80-87.
[7] 孟宗, 季艳. 基于DEMD和对称差分能量算子解调的滚动轴承故障诊断[J]. 中国机械工程, 2015, 26(12):1658-1664.
MENG Zong, JI Yan. Fault Diagnosis of Rolling Bearings Based on DEMD and Symmetric Difference Energy Operator Demodulation[J]. China Mechanical Engineering, 2015, 26(12):1658-1664.
[8] 徐元博, 蔡宗琰. 三点对称差分能量算子与经验小波变换在轴承故障诊断中的应用[J]. 电子测量与仪器学报, 2017, 31(8),1247-1256.
XU Yuan-bo, CAI Zong-yan. Application of demodulation energy operator of symmetrical differencing and empirical wavelet transform in bearing fault diagnosis[J]. Journal of Electronic Measurement and Instrumentation, 2017, 31(8),1247-1256.
[9] 秦波, 王祖达, 郭慧莉,等. 基于VMD和对称差分能量算子解调的滚动轴承故障诊断方法[J]. 机械传动, 2017(5):143-147.
QIN Bo, WANG Zu-da, GUO Hui-li, et al. Fault Diagnosis of Roll-ing Bearings based on VMD and Symmetric Difference Energy Operator Demodulation[J]. 2017(5):143-147.
[10] J. F. Kaiser, “On a simple algorithm to calculate the ’energy’ of a signal,” in Proc. IEEE Int’l Conf. Acoust., Speech, and Sagnal Processing., Apr. 1990.
[11] Feldman M. Hilbert transform in vibration analysis[J]. Mecha-nical Systems & Signal Processing, 2011, 25(3):735-802.
[12] Reed J. Introduction to ultra wideband communication syste-ms, an[M]. Prentice Hall Press, 2005.
[13] Dragomiretskiy K, Zosso D. Variational Mode Decomposition[J]. IEEE Transactions on Signal Processing, 2013, 62(3): 531-544.
[14] 刘长良,武英杰,甄成刚.基于变分模态分解和模糊C均值聚类的滚动轴承故障诊断[J].中国电机工程学报,2015,35(13):3358-3366.
[15] 马增强, 李亚超, 刘政,等. 基于变分模态分解和Teager能量算子的滚动轴承故障特征提取[J]. 振动与冲击, 2016, 35(13):134-139.
[16] Mohanty, Gupta K K, Raju K S. Bearing fault analysis using variational mode decomposition[C]// International Conferenc-e on Industrial and Information Systems. IEEE, 2015:1-6.
[17] 闻邦椿. 振动机械理论、技术及其应用[M]. 北京:科学出版社, 2010.
WEN Bang-chun. Theory and techniques of vibrating machinery a-nd their applications[M]. Beinging: Science press, 2010.
[18] Kral Z, Karagülle H.Vibration analysis of rolling element be-arings with various defects under the action of an unbalanced
Force[J]. Mechanical Systems and Signal Processing, 2006, 20(8):1967-1991.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}