一种分析非均匀厚度1-3型压电复合材料换能器性能的方法

孙瑛琦,曾德平,张春杨,许佳琪,张菁霓,龚洋,何倩,高雪梅,杨增涛

振动与冲击 ›› 2019, Vol. 38 ›› Issue (8) : 75-79.

PDF(765 KB)
PDF(765 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (8) : 75-79.
论文

一种分析非均匀厚度1-3型压电复合材料换能器性能的方法

  • 孙瑛琦,曾德平,张春杨,许佳琪,张菁霓,龚洋,何倩,高雪梅,杨增涛
作者信息 +

A method on analyzing the performance of a 1-3 piezoelectric composites with non-uniform thickness

  • SUN Yingqi,ZENG Deping,ZHANG Chunyang,XU Jiaqi,ZHANG Jingni,GONG Yang,HE Qian,GAO Xuemei,YANG Zengtao
Author information +
文章历史 +

摘要

非均匀厚度1-3型压电复合材料可用于制作宽带压电换能器,已广泛应用于水浸无损探伤、声波测井以及超声成像等领域。为分析该换能器的振动及其性能,本文提出了一种并联振子等效电路模型,将非均匀厚度1-3型压电复合材料换能器看成并联的谐振器阵列,采用三维厚度伸缩振动模型对单个谐振器单元进行理论分析,得出了非均匀厚度1-3型压电复合材料换能器的阻抗计算公式。为验证该模型的正确性,设计并制作了一个平凹的1-3型压电复合材料换能器,实验结果显示,并联振子等效电路模型能准确的分析非均匀厚度1-3型压电复合材料片的性能。结果表明,非均匀厚度换能器带宽的主要是由压电片的厚度差异决定,研究结果可为非均匀厚度宽带换能器的设计提供参考。

Abstract

1-3 piezoelectric composites transducers with non-uniform thickness which have characteristics of wide bandwidth are widely used in the fields of underwater ultrasonic testing, sonic logging, and ultrasonic imaging.In this paper, an equivalent circuit model of a parallel-connected resonator arrays was proposed to analyze the vibration and performance of the transducer.When a 1-3 piezoelectric composite plate was designed to have a gradually varying thickness, the plate could be regarded as composed of parallel-connected oscillator arrays with various thicknesses.And a 3D thickness-stretching vibration model was employed to analyze the single resonator unit.Impedance of non-uniform thickness 1-3 piezoelectric composite transducer was achieved.To verify the theory, a transducer using a flat-concave 1-3 piezoelectric composite plate was fabricated.The experiment results agree well with the theory, indicating that the equivalent circuit model of a parallel resonator array is well suitable for accurately predicting the performance of the 1-3 piezoelectric composite with non-uniform thickness.The transducer bandwidth is mainly determined by on its thickness variation.The research results can be used as guidelines for the design of the transducer with non-uniform thickness.

关键词

非均匀厚度 / 1-3型压电复合材料 / 并联振子等效电路模型 / 阻抗

Key words

non-uniform thickness / 1-3 piezoelectric composites / equivalent circuit model of the parallel oscillator / impedance

引用本文

导出引用
孙瑛琦,曾德平,张春杨,许佳琪,张菁霓,龚洋,何倩,高雪梅,杨增涛. 一种分析非均匀厚度1-3型压电复合材料换能器性能的方法[J]. 振动与冲击, 2019, 38(8): 75-79
SUN Yingqi,ZENG Deping,ZHANG Chunyang,XU Jiaqi,ZHANG Jingni,GONG Yang,HE Qian,GAO Xuemei,YANG Zengtao. A method on analyzing the performance of a 1-3 piezoelectric composites with non-uniform thickness[J]. Journal of Vibration and Shock, 2019, 38(8): 75-79

参考文献

[1] Smith W A, Auld B A. Modeling 1-3 composite piezoelectrics: thickness-mode oscillations[J]. Ultrasonics Ferroelectrics & Frequency Control IEEE Transactions on, 1991, 38(1):40-47.
[2] Janas V F, Safari A. Overview of Fine‐Scale Piezoelectric CeramicPolymer Composite Processing[J]. Journal of the American Ceramic Society, 1995, 78(11):2945-2955.
[3] Jian X, Han Z, Liu P, et al. A High Frequency Geometric Focusing Transducer Based on 1-3 Piezocomposite for Intravascular Ultrasound Imaging[J]. Biomed Research International, 2017, 2017:1-8.
[4] 何敏, 郝琦, 王科鑫,等. 压电复合材料用于透镜式聚焦换能器的研究[J]. 无机材料学报, 2015, 30(7):745-750.
HE Ming, HAO Qi, WANG Ke-xin, et al. Properties of a Lens-focused Transducer Based on Piezoelectric Composites[J]. Journal of Inorganic Materials, 2015, 30(7):745-750.
[5] Zhang H, Chen H J. The research on 1–3 type piezoelectric composite material application in vector hydrophone[C]. Ocean Acoustics. IEEE, 2016:1-5.
[6] Hossack J A, Zhou S, Powell D J. Finite element analysis of phased plano-concave multi-layer transducers[C]. Ultrasonics Symposium. IEEE, 2001, 1003-1006.
[7] Kobayashi T. Focusing Ultrasonic Transducer with Broad Bandwidth of the Plano-Concave and Plano-Convex Shapes[J]. Japanese Journal of Applied Physics, 1984, 23(S1):122-124.
[8] Tai H, Kobayashi T. Broadband Transducer for Diagnostics Using a Plano-Concave Ultrasonic Transducer Driven by Chirp Wave[J]. Japanese Journal of Applied Physics, 2003, 42(5):3031-3035.
[9] 耿学仓, 杨玉瑞, 党长久,等. 一种非均匀厚度压电复合材料片宽带换能器的实验研究[J]. 应用声学, 1995, 14(2):21-26.
GENG Xue-cang, YANG Yu-rui, DANG Chang-jiu, et al. Laboratory investigation of a wideband transducer using nonhomogeneousthickness piezocomposite material[J]. Applied Acoustics, 1995(2):21-26.
[10] Kobayashi T, Tai H, Kato S. Measurement method of particle concentration and acoustic properties in suspension using a focused ultrasonic impulse radiated from a plano-concave transducer[J]. Ultrasonics, 2006, 44(8):e491-e496.
[11] Harris G R, Gammell P M. piezoelectric composite transducers for swept-frequency calibration of hydrophones from 100 kHz to 2 MHz[J]. Journal of the Acoustical Society of America, 2004, 115(6):2914-2918.
[12] Xu J, Lin S, Ma Y, et al. Analysis on Coupled Vibration of a Radially Polarized Piezoelectric Cylindrical Transducer[J]. Sensors, 2017, 17(12):2850.
[13] Lin S Y. COUPLED VIBRATION ANALYSIS OF PIEZOELECTRIC CERAMIC DISK RESONATORS[J]. Journal of Sound & Vibration, 1998, 218(218):205-217.
[14] Lin S, Xu J, Cao H. Analysis on the Ring-Type Piezoelectric Ceramic Transformer in Radial Vibration[J]. IEEE Transactions on Power Electronics, 2016, 31(7):5079-5088.
[15] 栾桂冬,张金铎,王仁乾. 压电换能器和换能器阵[M]. (修订版)北京: 北京大学出版社, 2005.
LUAN Gui-dong, ZHANG Jin-duo, WANG Ren-qian. Piezoelectric transducer and transducer array[M]. Beijing: Peking University Press, 2005.
[16] Dong S S, Feld D A. A general nonlinear Mason model and its application to piezoelectric resonators[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2011, 21(5):486-495.
[17] Ballandras S, Wilm M, Edoa P F, et al. Finite-element analysis of periodic piezoelectric transducers[J]. Journal of Applied Physics, 2003, 93(1):702-711.
[18] Chan H W, Unsworth J. Simple model for piezoelectric ceramicpolymer 1-3 composites used in ultrasonic transducer applications[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 1989, 36(4):434-41.
[19] Bennett J, Hayward G. Design of 1-3 piezocomposite hydrophones using finite element analysis[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 1997, 44(3):565-574.
[20] Yang Z, Wang H, Zhao C, et al. Modeling of 1-3 piezoelectric composites operating in thickness-stretch vibration mode[J]. Philosophical Magazine Letters, 2015, 96(6):324-332.
[21] Yang Z T, Zeng D P, He M, et al. Theoretical and experimental investigations of thickness- stretch modes in 1-3 piezoelectric composites[J]. IOP Conference Series: Materials Science and Engineering, 2015, 103(1):1-6.
[22] Yang Z, Zeng D, Wang H, et al. Harvesting ultrasonic energy using 1-3 piezoelectric composites[J]. Smart Materials & Structures, 2015, 24(7):1-8.
[23] Yang Z, Wang H, Zeng D, et al. Dynamic modeling of 1–3 piezoelectric composite hydrophone and its experimental validation[J]. Composite Structures, 2016, 150(1):246-254.
[24] Smith W A. Modeling 1-3 composite piezoelectrics: hydrostatic response[J]. IEEE Trans Ultrason Ferroelectr Freq Control, 1993, 40(1):41-9.
[25] Yang J. Analysis of Piezoelectric Devices[M]. Hackensack: WORLD SCIENTIFIC, 2006.
[26] Sliwa J W, Ayter S, Mohr Iii J P. Method for making piezoelectric composites[P]. US United States Patent, US5239736. 1993.
[27] Zhu D, Tudor M J, Beeby S P. Strategies for increasing the operating frequency range of vibration energy harvesters: a review[J]. Measurement Science and Technology, 2009, 21(2):1-29.
[28] Xue H, Hu Y, Wang Q M. Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies[J]. IEEE transactions on ultrasonics ferroelectrics and frequency control, 2008, 55(9):2014-2018.

PDF(765 KB)

Accesses

Citation

Detail

段落导航
相关文章

/