基于海流能发电涡激振动驱动俘获能量这一想法,对耦合连接的四圆柱结构在均匀海流流速下的自由涡激振动进行模拟发现:振动结构的响应幅值在较大和较小约化速度下,随组合间距比LH/D2的变化相差较大。因此对Ur=5.71和Ur=14.29两种约化速度下结构位移幅值谱图、升力特性、相位差进行分析,结果表明:Ur=5.71时,不同间距比下各圆柱升力与位移间的相位角Φ不同,存在明显的主频且按较规则的正弦规律变化,四个圆柱对结构的振动都起激励作用,各圆柱俘获的水动能或转移到水流中的机械能相对稳定;而Ur=14.29时,各圆柱升力波动不规则,升力频率成分复杂,升力位移间的相位角Φ不明显,各圆柱俘获水动能不稳定,对结构振动起主要作用的是下游两圆柱。论文结果对柱群结构俘获海流能时其约化速度范围的确定有一定的参考作用。
Abstract
Based on hydrokinetic energy harvested in ocean current power generation driven by vortex-induced vibration (VIV), the free VIV of a four cylindrical structure with coupling connection under uniform current velocities was simulated.It was found that the response amplitudes of the vibration system were significantly different under smaller and larger reduced velocities Ur with the change of combination spacing ratio LH/D2.Therefore, amplitude spectra of displacement, lift characteristics, phase angles of the structure under Ur=5.71 and Ur=14.29 were analyzed.The results show that when Ur=5.71, lift forces change along sine signal and the main frequencies of each cylinder’s lift force are obvious under different spacing ratios, the phase angles Φ between lift force and displacement are different, four cylinders all have incentive effect on the vibration of the structure, consequently, the harvesting hydrokinetic energy from current or the mechanical energy transferred to current are stable; when Ur=14.29, the lift forces of each cylinder fluctuate irregularly, frequency components are complicated, the phase angles Φ between the lift force and displacement are not obvious, so the harvesting hydrokinetic energy of each cylinder is not stable and the two cylinders in downstream play an important role in structure vibration.The study results provid a reference to the reduced velocity range for a multi-cylinder structure when energy is extracted from ocean current.
关键词
海流能发电 /
涡激振动 /
约化速度 /
水动能
{{custom_keyword}} /
Key words
ocean current power generation /
vortex-induced vibration /
reduced velocity /
hydrokinetic energy
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王传崑,卢苇. 海洋能资源分析方法及储量评估[M]. 北京:海洋出版社,2009.5.
[2] Chang C C, Kumar R A, Bernitsas M M. VIV and galloping of single circular cylinder with surface roughness at 3.0×104≤ Re ≤ 1.2×105[J]. Ocean Engineering, 2011, 38(16): 1713 –1732.
[3] Raghavan K, Bernitsas M M. Enhancement of high damping VIV through roughness distribution for energy harnessing at 8×103≤Re≤1.5×105[C]. In 27th International Conference on Offshore Mechanics and Arctic Engineering, 2008:871– 882.
[4] Park H, Kumar R A, Bernitsas M M. Enhancement of flow-induced motion of rigid circular cylinder springs by localized surface roughness at 3×104≤Re≤1.2×105[J]. Ocean Engineering, 2013, 72: 403 – 415.
[5] Bernitsas M M, Raghawan Y, Ben-Simon E M H, et al. VIVACE (vortex induced vibration for aquatic clean renewable energy from fluid flow[J]. Journal of Offshore Mechanics and Arctic Engineering, 2008, 130: 041101.
[6] 罗竹梅,张立翔. 影响从涡激振动中俘获能量的参数研究[J]. 振动与冲击,2014, 33(9): 12 – 15.
LUO Zhu-mei,ZHANG Li-xiang. Influence of parameters on extracting energy from a vortex-induced vibration[J]. Journal of vibration and shock,2014, 33(9): 12 – 15.
[7] 罗竹梅,张立翔. 布置方式对圆柱系统从涡激振动中俘获能量的影响[J]. 船舶力学,2014,18(8): 933 – 939.
LUO Zhu-mei,ZHANG Li-xiang. Influence of arrangement on harvesting energy for cylinder system from vortex-induced vibration [J]. Journal of Ship Mechanics,2014,18(8): 933 – 939.
[8] Lee J H, Bernitsas M M. High-damping, high-Reynolds VIV tests for energy harnessing using the VIVACE converter [J]. Ocean Engineering 2011, 38: 1697 – 1712.
[9] Zdravkovich M M. Flow around circular cylinders Volume 1: Fundamentals [M]. Oxford: Oxford Science Publications, 1997.
[10] 訚耀保. 海洋波浪能量综合利用[M].上海:上海科学技术出版社,2011.1.
Yin Yao-bao. Principle and Device of the Ocean Wave Energy Conversion[M]. Shanghai: Shanghai Science and Technique Publishing House, 2011.1.
[11] Brika D, Laneville A. The flow interaction between a stationary cylinder and downstream flexible cylinder [J]. Journal of Fluids and Structures, 1999, 13:579 – 606.
[12] Hover F S, Triantafyllou M S. Galloping response of a cylinder with upstream wake interference [J]. Journal of Fluids and Structures, 2001, 15:503 – 512.
[13] Brankovic M, Bearman P W. Measurements of transverse forces on circular cylinders undergoing vortex-induced vibration [J]. Journal of Fluids and Structures, 2006, 22: 829 – 836.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}