基于原点速度反馈的推进轴系横向振动传递控制研究

谢溪凌1,2,覃会1,2,徐颖蕾1,2,张志谊1,2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (9) : 115-122.

PDF(2782 KB)
PDF(2782 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (9) : 115-122.
论文

基于原点速度反馈的推进轴系横向振动传递控制研究

  • 谢溪凌1,2,覃会1,2,徐颖蕾1,2,张志谊1,2
作者信息 +

Active control of propulsion shafting’s lateral vibration with active stern support and local velocity feedback control

  • XIE Xiling1,2, QIN Hui1,2, XU Yinglei1,2, ZHANG Zhiyi1,2
Author information +
文章历史 +

摘要

螺旋桨脉动力诱导的轴系-壳体耦合振动是水下航行器低频振动声辐射的重要原因之一。针对推进轴系横向振动传递控制,提出一种基于原点速度反馈的主动艉支承控制方法。建立包含六自由度主动艉支承的螺旋桨-轴系-壳体耦合振动模型,考虑原点速度反馈策略,计算主动支承对推进轴系横向振动传递的控制效果。分析结果表明,将六自由度主动艉支承用于横向振动传递抑制,能够在0-200Hz内有效降低系统固有振动幅值,而且与推力轴承处主动控制相结合,在重点模态频率处可取得更优的控制效果。

Abstract

The shafting-hull coupled vibration induced by the propeller fluctuating thrust forces is an important source of the low frequency radiation of submarines. An active control method, which uses active stern support and local velocity feedback control, is presented to suppress the transmission of lateral vibration of the propulsion shafting. The dynamic model of the propeller-shafting-hull coupled system embedded with the 6-DOF active stern support is established with the finite element method and the performance of the local velocity feedback control is evaluated. The results demonstrated that the performance of the lateral vibration control with the active stern support is prominent and a noticeable attenuation in the frequency range of 0-200Hz is achieved. In addition, the active control method is able to obtain a better attenuation at some critical mode frequencies with the combined control at the stern support and the thrust bearing.

关键词

轴系横向振动 / 艉支承 / 速度反馈 / 主动控制

Key words

Lateral vibration / Stern support / Velocity feedback / Active control

引用本文

导出引用
谢溪凌1,2,覃会1,2,徐颖蕾1,2,张志谊1,2. 基于原点速度反馈的推进轴系横向振动传递控制研究[J]. 振动与冲击, 2019, 38(9): 115-122
XIE Xiling1,2, QIN Hui1,2, XU Yinglei1,2, ZHANG Zhiyi1,2. Active control of propulsion shafting’s lateral vibration with active stern support and local velocity feedback control[J]. Journal of Vibration and Shock, 2019, 38(9): 115-122

参考文献

[1] 华宏星, 俞强. 船舶艉部激励耦合振动噪声机理研究进展与展望[J]. 中国舰船研究, 2017, 12(4): 6-16.
Hua H X,Yu Q. Structural and acoustic response due to excitation from ship stern: overview and suggestions for future research[J]. Chinese Journal of Ship Research,2017,12(4):6-16.
[2] 胡芳. 推进轴系纵向振动主动控制方法研究[D]. 上海:上海交通大学, 2015.
Hu F. Research on active control of the longitudinal vibration of propulsion shafting systems[D]. Shanghai:Shanghai Jiao Tong University,2015(in Chinese).
[3] Dylejko P G. Optimum resonance changer for submerged vessel signature reduction[J]. University of New South Wales, Sydney, 2007.
[4] Merz S. Passive and active control of the sound radiated by a submerged vessel due to propeller forces[D]. Ph. D. thesis, University of New South Wales, Sydney, Australia, 2010.
[5] Pan X, Tso Y, Juniper R. Active control of radiated pressure of a submarine hull[J]. Journal of Sound and Vibration, 2008, 311(1): 224-242.
[6] Caresta M. Active control of sound radiated by a submarine in bending vibration[J]. Journal of Sound and Vibration, 2011, 330(4): 615-624.
[7] Caresta M, Kessissoglou N. Active control of sound radiated by a submarine hull in axisymmetric vibration using inertial actuators[J]. Journal of Vibration and Acoustics, 2012, 134(1): 011002.
[8] Qin H, Zheng H B, Qin W Y, Zhang Z Y. Active control of lateral vibration of a shaft-hull coupled system, The 24th International Congress on Sound and Vibration, London, UK, 23-27 July, 2017.
[9] Lusty C, Sahinkaya N, Keogh P. A novel twin-shaft rotor layout with active magnetic couplings for vibration control[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2016, 230(3): 266-276.
[10] Chasalevris A, Dohnal F. Improving stability and operation of turbine rotors using adjustable journal bearings[J]. Tribology International, 2016, 104: 369-382.
[11] Chasalevris A, Dohnal F. A journal bearing with variable geometry for the suppression of vibrations in rotating shafts: Simulation, design, construction and experiment[J]. Mechanical Systems and Signal Processing, 2015, 52: 506-528.
[12] Koroishi E H, Borges A S, Cavalini A A, et al. Numerical and experimental modal control of flexible rotor using electromagnetic actuator[J]. Mathematical Problems in Engineering, 2014, 2014.
[13] Zhao G, Alujević N, Depraetere B, et al. Experimental study on active structural acoustic control of rotating machinery using rotating piezo-based inertial actuators[J]. Journal of sound and vibration, 2015, 348: 15-30.
[14] Pierart F G, Santos I F. Lateral vibration control of a flexible overcritical rotor via an active gas bearing–Theoretical and experimental comparisons[J]. Journal of Sound and Vibration, 2016, 383: 20-34.
[15] Salazar J G, Santos I F. Feedback-controlled lubrication for reducing the lateral vibration of flexible rotors supported by tilting-pad journal bearings[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2015, 229(10): 1264-1275.
[16] Salazar J G, Santos I F. Active tilting-pad journal bearings supporting flexible rotors: Part I–The hybrid lubrication[J]. Tribology International, 2017, 107: 94-105.
[17] Salazar J G, Santos I F. Active tilting-pad journal bearings supporting flexible rotors: Part II–The model-based feedback-controlled lubrication[J]. Tribology International, 2017, 107: 106-115.
[18] Jianfei Y, Jinji G, Weimin W. Multi-frequency rotor vibration suppressing through self-optimizing control of electromagnetic force[J]. Journal of Vibration and Control, 2017, 23(5): 701-715.
[19] Roy H K, Das A S, Dutt J K. An efficient rotor suspension with active magnetic bearings having viscoelastic control law[J]. Mechanism and Machine Theory, 2016, 98: 48-63.
[20] 王俊芳. 自适应主动隔振的理论和实验研究[D]. 上海交通大学, 2008.
Wang J F. Theoretical and experimental study on adaptive vibration isolation[D]. Shanghai:Shanghai Jiao Tong University,2008(in Chinese).
[21] Benassi L, Elliott S J. Active vibration isolation using an inertial actuator with local displacement feedback control[J]. Journal of Sound and Vibration, 2004, 278(4): 705-724.
[22] Benassi L, Elliott S J, Gardonio P. Active vibration isolation using an inertial actuator with local force feedback control[J]. Journal of Sound and Vibration, 2004, 276(1): 157-179.
[23] Preumont A, François A, Bossens F, et al. Force feedback versus acceleration feedback in active vibration isolation[J]. Journal of sound and vibration, 2002, 257(4): 605-613.
[24] Munoa J, Mancisidor I, Loix N, et al. Chatter suppression in ram type travelling column milling machines using a biaxial inertial actuator[J]. CIRP Annals-Manufacturing Technology, 2013, 62(1): 407-410.
[25] Wang J, Yang H S, Hua H X. Investigations on the vibrational and acoustic characteristics of a submarine-like system by experiments and simulations[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2017: 1475090217708892.

PDF(2782 KB)

522

Accesses

0

Citation

Detail

段落导航
相关文章

/