目前有关地震动相干性研究基本上是限于自由场地的地面运动相干性问题。为探究地震动随场地深度变化的相干性,寻求一种适用于不同类型场地随深度变化的地震动相干函数模型,以日本KiK-net台网采集的2679对地震动记录为基础,利用随机振动理论和数字信号处理技术对不同类型场地随深度变化的地震动相干性问题进行了研究。通过对水平向地震动分量相干函数计算值的拟合,建立了一种适用于不同类型场地的水平向地震动随深度变化的相干函数模型,并进行了参数回归分析。分析结果表明:震级及震中距(<200km)对相干函数的影响可忽略不计;剪切波速对相干函数产生较大的影响,与浅层土相比,深层土剪切波速的影响更大;水平向地震动的相干函数值随深度和频率的增大呈指数形式衰减;相较于深度的影响,频率对相干函数值衰减速率的影响更加明显。在对地震动相干函数值的估计中,场地条件是不容忽视的因素,随着场地由硬变软,相干函数值随深度的衰减愈来愈快。
Abstract
At present, the research on the coherency of seismic ground motions is almost limited to the coherency problem of ground motion in free field. In order to investigate the variability of seismic ground motions on depth and seek a model to simulate coherency of ground motions function varied with depth for different types of sites, 2679 pairs of ground motion records were collected from KiK-net of Japan in this paper. The random vibration theory and the digital signal processing techniques were used to study the coherency varied with depth. By fitting the calculated coherency function of horizontal components of ground motions, a coherency model with unified mathematical expression for different sites was proposed and the corresponding parameters were analyzed. The results show that there is no significant dependence between the estimated coherencies from different earthquake magnitudes or epicentral distance (less than 200 km); shear wave velocity(VS) plays an significant role on depth coherency and compared with Vs of shallow soil, the effect of Vs of deep soil on depth coherency is notable; the coherence function varied with depth for horizontal components has an exponential reduction tendency along with increasing depth and frequency, and frequency plays a more significant effect on the velocity of coherency function than depth. Coherency function is site dependent: the softer the site condition, the faster decay the coherencies with depth.
关键词
水平向地震动 /
随场地深度变化的相干函数 /
KiK-net台网记录 /
不同类型场地
{{custom_keyword}} /
Key words
horizontal components of ground motions /
coherency function varied with depth /
KiK-net /
different types of site
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]. 刘先明, 叶继红, 李爱群. 竖向地震动场的空间相干函数模型[J]. 工程力学, 2004, 21(2):140-144
Liu X M, Ye J H, Li A Q. Space coherency function model of vertical ground motion[J]. Engineering Mechanics, 2004, 21(2):140-144(in Chinese))
[2]. 丁海平, 宋贞霞. 震源参数对地震动相干函数的影响[J]. 振动与冲击, 2010, 29(7):16-18
[3]. 阿布都瓦里斯, 俞瑞芳, 俞言祥. 基于汶川地震加速度记录的地震动相干函数变化特性[J]. 振动与冲击, 2013, 32(16):70-75
Abuduwalisi, Rui-Fang Y U, Yan-Xiang Y U. Spatial variation of ground motions based on wenchuan acceleration records[J]. Journal of Vibration & Shock, 2013, 32(16):70-75+81(in Chinese))
[4]. 陈清军, 杨永胜, 王沿朝. 基于强震台阵记录的地震动空间相干函数实用模型[J]. 土木工程学报, 2016(s1):1-6
Chen Q J, Yang Y S, Wang Y C. A practical spatial coherence model of seismic ground motion based on strong earthquake array records[J]. China Civil Engineering Journal, 2016(s1):1-6(in Chinese))
[5]. Dulinska JM. Importance of ground motion spatial variability effects on earth dam. International Journal of Earth Sciences and Engineering 2012February; 5(1):1–9
[6]. Bi K., Hao H. Numerical simulation of pounding damage to bridge structures under spatially varying ground motion. Engineering Structures 2013; 46:62–76
[7]. Jeremic B, Tafazzoli N, Ancheta T, Orbovic N, Blahoianu A. Seismic behavior of NPP structures subjected to realistic 3D, inclined seismic ground motions, in variable layered soil/rock, on surface of embedded foundations. Nuclear Engineering and Design 2013; 265:85–94
[8]. 王国新, 王招招, 王东明. 随深度变化的地震动相干性研究[J]. 振动与冲击, 2013, 32(17):118-122
Wang G X, Wang Z Z, Wang D M. Coherence variations of different strong ground motion arrays with depth[J]. Journal of Vibration & Shock, 2013, 32(17):118-122(in Chinese))
[9]. 胡灿阳, 陈清军. 基于EMD和最小二乘法的基线飘移研究[J]. 振动与冲击, 2010, 29(3):162-167.
[10]. EPRI. Program on technology innovation: effects of spatial incoherence on seismic ground motions. Technical Report 1015110, EPRI, Palo Alto, CA: 2007
[11]. Svay, A., et al., Spatial coherency analysis of seismic ground motions from a rock site dense array implemented during the Kefalonia 2014 aftershock sequence. Earthquake Engineering & Structural Dynamics, 2017;1895-1917
[12]. Abrahamson N, Schneider JF, Stepp JC. Empirical spatial coherency functions for application to soil-structure interaction analyses. Earthquake Spectra 1991; 7(1):1–27
[13]. Zerva A. Spatial Variation of Seismic Ground Motions, Modelling and Engineering Application, CRC Press, Boca Raton, 2009
[14]. Todorovska, M.I., et al., Coherency of dispersed synthetic earthquake ground motion at small separation distances: Dependence on site conditions. Soil Dynamics and Earthquake Engineering, 2015. 79: p. 253-264
[15]. Ding, H., et al., Coherence of dispersed synthetic strong earthquake ground motion at small separation distances. Soil Dynamics and Earthquake Engineering, 2015. 70: p. 1-10
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}