全轮转向非线性重型车辆稳定性集成控制研究

李韶华1,2,张志达1,周军魏1

振动与冲击 ›› 2019, Vol. 38 ›› Issue (9) : 148-156.

PDF(1337 KB)
PDF(1337 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (9) : 148-156.
论文

全轮转向非线性重型车辆稳定性集成控制研究

  • 李韶华1,2,张志达1,周军魏1
作者信息 +

Nonlinear integrated control for maneuvering stability of a heavy-duty vehicle with all-wheel steering

  • LI Shaohua1,2,ZHANG Zhida1, ZHOU Junwei1#br#
Author information +
文章历史 +

摘要

建立了某三轴重型车辆的十自由度操纵稳定性非线性动力学模型,轮胎纵向力与侧向力采用非线性的刷子模型计算。考虑垂向载荷转移和车轮滑移率变化等对轮胎侧向力的影响,基于刷子模型对车辆参考模型的轮胎侧偏刚度进行逆向估计和动态实时修正。结合阿克曼原理和模糊PID控制技术,设计了一种主动比例转向控制(6WS)和直接横摆力矩控制(DYC)相结合的集成控制器(6WS+DYC),参考模型的横摆角速度名义值通过前轮转向和全轮转向横摆角速度相等时的临界速度确定。基于MATLAB/Simulink建立了车辆模型和6WS、DYC及6WS+DYC三种控制器,仿真了车辆高速转向和低附着路面转向两种极限工况下的响应,并对三种控制器的有效性进行了对比分析。研究结果表明,6WS控制可在一定程度内降低车辆的失稳程度,DYC控制和6WS+DYC控制均能保证车辆在极限工况下具有较好稳定性;6WS+DYC控制能够使车辆在两种转向工况下的质心侧偏角均接近于零,同时能够有效降低车辆横摆角速度、簧载质量侧倾角和车辆侧向加速度,其效果明显优于6WS控制和DYC控制。

Abstract

A 10-DOF nonlinear dynamic model for a certain 3-axle heavy-duty vehicle was established to study its maneuvering stability.Its tire longitudinal and lateral forces were calculated with the nonlinear brush model.Considering effects of vertical load transition and wheel sliding rate on tire lateral forces, based on the brush model, the tire cornering stiffness of the vehicle reference model was reversely estimated and dynamically corrected.Using Ackerman principle and Fuzzy PID control technology, an integrated controller (6WS+DYC) combining the active proportional steering control (6WS) and the direct yaw moment control (DYC) was designed.The normal value of yaw rate of the reference model was determined with the critical speed when the yaw rate of the vehicle front wheel steering (FWS) was equal to that of its all-wheel steering (6WS).Based on the software MATLAB/Simulink, the vehicle model and three controllers of 6WS, DYC and 6WS+DYC were built to simulate vehicle responses under two limit working conditions of high speed steering and low adhesion road surface steering.The effectiveness of three controllers is contrastively analyzed.The results showed that the 6WS control can reduce the instability of the vehicle to a certain extent; the DYC control and the 6WS+DYC one can ensure the heavy-duty vehicle to have a better stability under limit working conditions; the 6WS+DYC control can make vehicle sideslip angles two limit working conditions be close to zero, and can effectively reduce vehicle’s yaw rate, spring mass side inclination and vehicle’s lateral acceleration, its control effect is obviously superior to those of the 6WS control and the DYC one.

关键词

重型车辆 / 全轮转向 / 直接横摆力矩控制 / 集成控制 / 轮胎侧偏刚度动态修正

Key words

heavy-duty vehicle / all-wheel steering / direct yaw moment control / integrated control / dynamic correction of the tire cornering stiffness

引用本文

导出引用
李韶华1,2,张志达1,周军魏1. 全轮转向非线性重型车辆稳定性集成控制研究[J]. 振动与冲击, 2019, 38(9): 148-156
LI Shaohua1,2,ZHANG Zhida1, ZHOU Junwei1. Nonlinear integrated control for maneuvering stability of a heavy-duty vehicle with all-wheel steering[J]. Journal of Vibration and Shock, 2019, 38(9): 148-156

参考文献

[1] Li S H, Ren J Y. Driver steering control and full vehicle dynamics study based on a nonlinear three-directional coupled heavy-duty vehicle model[J].Mathematical Problems in Engineering, 2014(1):1-16.
[2] Li S, Yang S, Chen L. Investigation on cornering brake stability of a heavy-duty vehicle based on a nonlinear three-directional coupled model[J]. Applied Mathematical Modelling, 2016, 40(13):6310-6323.
[3] 李韶华,杨绍普,陈立群. 三向耦合非线性重型汽车建模及动力学分析[J]. 振动与冲击,2014,33(22):131-138.
Li Shaohua,Yang Shaopu,Chen Liqun. Modeling and dynamic analysis of a non-linear heavy vehicle with three- directional coupled motions[J]. Journal of Vibration and Shock,2014,33(22):131-138.
[4] 王树凤,李华师. 三轴车辆全轮转向最优控制[J]. 汽车工程,2013,35(8):667-672.
Wang Shufeng, Li Huashi. Optimal control of all-wheel steering in three-axle vehicle [J]. Automotive Engineering, 2013,35(8): 667-672.
[5] 刘西侠,袁磊,刘维平. 基于图解法的三轴车辆操纵稳定性分析[J]. 振动与冲击,2016,35(4):98-103.
Liu Xixia, Yuan Lei, Liu Weiping. Operating stability analysis for a three-axis vehicle based on a graphical method[J]. Journal of Vibration and Shock, 2016,35(4): 98-103.
[6] 刘维平,袁磊,刘西侠. 三轴全轮转向车辆水平集成控制研究[J]. 兵工学报,2016,37(2):203-210.
Liu Weiping, Yuan Lei, Liu Xixia. Study of integrated control of all-wheel-steering three-axil Vehicle [J]. Acta Armama- nfarii, 2016,37(2):203-210.
[7] 廖自力,阳贵兵,高强,等. 多轮独立电驱动车辆转向稳定性集成控制研究[J]. 兵工学报,2017,38(05):833-842.
Liao Zili, Yang Guibing, Gao Qiang, et al. Research on integrated control of steering stability of multi-wheel independent electric drive vehicle[J]. Acta Armamanfarii, 2017, 38(5):833-842.
[8] Kim W G, Kang J Y, Yi K. Drive control system design for stability and maneuverability of a 6WD/6WS vehicle[J]. International Journal of Automotive Technology, 2011, 12(1): 67-74.
[9] Song P, Tomizuka M, Zong C. A novel integrated chassis controller for full drive-by-wire vehicles[J]. Vehicle System Dynamics, 2015, 53(2):215-236.
[10] Russell H E B, Gerdes J C. Design of variable vehicle handling characteristics using four-wheel steer-by-wire[J]. IEEE Transactions on Control Systems Technology, 2016, 24(5):1529-1540.
[11] Dahmani H, Pagès O, Hajjaji A E. Observer-based state feedback control for vehicle chassis stability in critical situations[J]. IEEE Transactions on Control Systems Technology, 2016, 24(2):636-643.
[12] 郭洪艳,陈虹,赵海艳,等. 汽车行驶状态参数估计研究进展与展望[J]. 控制理论与应用,2013,30(6):661-672.
Guo Hongyan, Chen Hong, Zhao Haiyan, et al. State and parameter estimation for ruing vehicle: recent development and perspective [J]. Control Theory & Application,2013, 30(6):661-672.
[13] Liu W, He H, Sun F, et al. Integrated chassis control for a three-axle electric bus with distributed driving motors and active rear steering system[J]. Vehicle System Dynamics, 2017, 55(5):1-25.
[14] Doumiati M, Sename O, Dugard L, et al. Integrated vehicle dynamics control via coordination of active front steering and rear braking[J]. European Journal of Control, 2013, 19(2):121-143.
[15] 王树凤,李华师. 四轮转向车辆后轮转角与横摆力矩联合模糊控制[J]. 农业机械学报,2011,42(5):14-19.
Wang Shufeng, Li Huashi. Yaw moment Fuzzy control of four-wheel-steering vehicle based on co-simulation technol- ogy[J]. Transactions of the Chinese Society for Agricultural Machinery,2011,42(5):14-19.
[16] 杨福广,阮久宏,李贻斌,等. 4WID-4WIS车辆横摆运动AFS+ARS+DYC模糊控制[J]. 农业机械学报,2011, 42(10): 6-12.
Yang Guangfu, Ruan Jiuhong, Li Yibin, et al. 4WID-4WIS vehicle yaw control based on Fuzzy logic control of AFS+ARS+ DYC[J]. Transactions of the Chinese Society for Agricultural Machinery,2011,42(10):6-12.
[17] 赵立军,邓宁宁,罗念宁,等. 基于直接横摆力矩的四轮转向/驱动滑模控制[J]. 华南理工大学学报(自然科学版),2015, 43(8):69-74.
Zhao Lijun, Deng Ningning, Luo Nianning, et al. Four- wheel-steering/driving sliding mode control based on direct yaw moment[J]. Journal of South China University of Technology(Natural Science Edition) ,2015,43(8):69-74.
[18] 刘启佳,陈思忠. 基于LQR的四轮转向汽车控制方法[J]. 北京理工大学学报,2014,34(11):1135-1139.
Liu Qijia, Chen Sizhong. The control method about four wheels steering car based on LQR theory [J]. Transactions of Beijing institute of Technology,2014, 34(11): 1135-1139.
[19] Nam K, Fujimoto H, Hori Y. Lateral stability control of in-wheel-motor-driven electric vehicles based on sideslip angle estimation using lateral tire force sensors[J]. IEEE Transactions on Vehicular Technology, 2012,61(5):1972- 1985.
[20] 赵又群,李波,臧利国,等. 基于修正的轮胎刷子模型的轮胎纵向力分析[J]. 华南理工大学学报(自然科学版),2014, 42(11): 50-54.
Zhao Youqun, Li Bo, Zang Liguo, et al. Longitudinal force analysis of tire based Tire Brush Model on a Corrected[J]. Journal of South China University of Technology(Natural Science Edition),2014,42(11):50-54.
[21] Li L, Wang F Y, Zhou Q. Integrated longitudinal and lateral tire/road friction modeling and monitoring for vehicle motion control[J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(1):1-19.
[22] 宋翔,李旭,张为公,等. 汽车主动安全关键参数联合估计方法[J]. 交通运输工程学报,2014,14(1): 65-74.
Song Xiang, Li Xu, Zhang Weigong, et al. Joint estimation method of key parameters for automotive active safety[J]. Journal of Traffic and Transportation Engineering,2014,14 (01): 65-74.
[23] 张向文,王飞跃,高彦臣. 轮胎稳态模型的分析综述[J]. 汽车技术,2012,(3):1-7.
Zhang Xiangwen, Wang Feiyue, Gao Yanchen. Analysis of the tire steady-state models[J]. Automobile Technology,2012, (3): 1-7.
[24] 张向文,王飞跃,高彦臣. 轮胎稳态模型的分析综述[J]. 汽车技术,2012,(2):1-7.
Zhang Xiangwen, Wang Feiyue, Gao Yanchen. Analysis of the tire steady-state models[J]. Automobile Technology,2012, (2): 1-7.
[25] Zheng S, Tang H, Han Z, et al. Controller design for vehicle stability enhancement[J]. Control Engineering Practice, 2006, 14(12):1413-1421.
[26] 金智林,张鸿生,马翠贞. 基于动态稳定性的汽车侧翻预警[J]. 机械工程学报,2012,48(14):128-133.
Jin Zhilin, Zhang Hongsheng, Ma Cuizhen. Vehicle rollover warning based on dynamic stability[J]. Journal of Mechanical Engineering,2012,48(14):128-133.
[27] M. T. Emırler, K. Kahraman, M. Şentürk, et al. Lateral stability control of fully electric vehicles[J]. International Journal of Automotive Technology, 2015, 16(2):317-328.
[28] 李亮,贾钢,宋健等. 汽车动力学稳定性控制研究进展[J]. 机械工程学报,2013,49(24):95-107.
Li Liang, Jia Gang, Song Jian, et al. Progress on vehicle dynamics stability control system [J]. Journal of Mechanical Engineering,2013,49(24):95-107.
[29] Choi M, Choi S B. Model predictive control for vehicle yaw stability with practical concerns[J]. IEEE Transactions on Vehicular Technology, 2014, 63(8):3539-3548.
[30] Rajamani R. Vehicle Dynamics and Control  (Mechanical Engineering Series) [M]. New York: Springer,2011.
[31] Arat M A, Singh K B, Taheri S. An intelligent tyre based adaptive vehicle stability controller[J]. International Journal of Vehicle Design, 2014, 65(2):118-143.
[32] 杨易,秦小飞,徐永康,等. 基于AFS与DYC的车辆侧风稳定性控制研究[J]. 湖南大学学报(自然科学版),2014, 41(5):14-19.
Yang Yi, Qin Xiaofei, Xu Yongkang, et al. Study of vehicle crosswind stability control based on AFS and DYC [J]. Journal of Hunan University(Natural Sciences),2014,41(5): 14-19.

PDF(1337 KB)

351

Accesses

0

Citation

Detail

段落导航
相关文章

/