This article uses a processing method of ultrasonic elliptical vibration cutting (UEVC) for TC4 titanium alloy . The present work is a comprehensive study involving 2D FE transient simulation of UEVC in ABAQUS of force - thermal coupling analysis cutting process of titanium alloy and experimental study. The transient cutting simulations are under different cutting depth and cutting speed of. The work extracts and contrasts the main cutting force from the process of conventional cutting(CC) and the ultrasonic elliptical vibration cutting(UEVC). Then the data processing is analyzed and study the difference average main cutting force between CC and UEVC .The research and analysis show that the ratio of cutting forces were decreased with the increased of cutting depth. The ratio of cutting forces were increased with the increased of cutting speed. Finally, researchers carried out specific test to verify this change rule .To the “difficult-to-cut” material--- titanium alloy ,this article provides a reference for the choice of cutting amount in actual machining.
TONG Jinglin, WEI Guan.
Characteristics of cutting force during titanium alloy processed with UEVC[J]. Journal of Vibration and Shock, 2019, 38(9): 208-215
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Thepsonthi, T. and T. Özel, 3-D finite element process simulation of micro-end milling Ti-6Al-4V titanium alloy: Experimental validations on chip flow and tool wear. Journal of Materials Processing Technology[J], 2015. 221: p. 128-145.
[2] Pratap, T., K. Patra and A.A. Dyakonov, Modeling Cutting Force in Micro-Milling of Ti-6Al-4V Titanium Alloy[J]. Procedia Engineering, 2015. 129: p. 134-139.
[3] Sui, H., et al., Feasibility study of high-speed ultrasonic vibration cutting titanium alloy[J].Journal of Materials Processing Technology, 2017.
[4] Harada K, Sasahara H. Effect of dynamic response and displacement/stress amplitude on ultrasonic vibration cutting[J]. Journal of Materials Processing Technology, 2009, 209(9):4490-4495.
[5] 唐军, 碳/碳化硅材料纵扭复合超声铣削系统及加工稳定性的研究[D], 河南理工大学. 2015.
Tang Jun. Study on the longitudinal-torsional compositeultrasonic milling system of carbon/siliconcarbide and machining stability[D]. Henan Polytechnic University.2015.
[6] Xiao, M., et al., The effect of tool nose radius in ultrasonic vibration cutting of hard metal[J]. International Journal of Machine Tools & Manufacture, 2003. 43(13): p. 1375-1382.
[7] 牛赢, 硬质合金激光超声辅助切削刀具磨损特性研究[D], 河南理工大学,2014.
NiuYing. Research on Characteristics of Tool Wear in Laser Heating and Ultrasonic Vibration Aided Cutting of Tungsten Carbide. Henan Polytechnic University.2014.
[8] Ducobu, F., et al., Finite Element Prediction of the Tool Wear Influence in Ti6Al4V Machining[J]. Procedia Cirp, 2015. 31: p. 124-129.
[9] 杨勇, 柯映林与董辉跃, 金属切削加工中航空铝合金板材的本构模型[J]. 中国有色金属学报, 2005. 15(6): 第854-859页.
YangYong,KeYinglin DongHuiyue et al. Constitutive model of aviation aluminum-alloy materialin metal machining[J].The Chinese Journal of Nonferrous Metals. 2005. 15(6):p.854-859.
[10] 黄志刚, 柯映林与王立涛, 金属切削加工的热力耦合模型及有限元模拟研究[J]. 航空学报, 2004. 25(3): 第317-320页.
HuangZhigang,KeYinglin,WangLitao,Coupled Thermo-mechanical Model for Metal Orthogonal Cutting Process and Finite Element Simulation[J].Acta Aeronautica ET Astronautica Sinica. 2004. 25(3): p317-320.
[11] 董辉跃, 航空整体结构件加工过程的数值仿真[D], 浙江大学, 2004.
DongHuiyue. The Research isSupported byNational Natural Science Foundation of China etc[D]. Zhejiang University,2004
[12] 孙杰, 航空整体结构件数控加工变形校正理论和方法研究[D],浙江大学. 2003.
SunJie.Study on Correction Theory and Method for Distorted Aeronautical Monolithic Component Due to Nc Machining [D],Zhejing University. ,2004.
[13] 汤敬计, 超精密切削过程的有限元仿真[D],哈尔滨工业大学,2004.
TangJingji. Finite element simulation of ultra-precision cutting process [D],Harbin Institute of Technology,2004.
[14] 李国宾, 微细金属切削加工过程有限元仿真实验研究[D],天津大学,2010
LiGuobin,Research on the FEM Simulation of Metal Micro-cutting Process[D], TianjinUniversity,2010.
[15] Ali, Moaz H., et al.FEM to predict the effect of feed rate on surface roughness with cutting force during face milling of titanium alloy[J]. HBRC Journal 9.3 (2013): 263-269.
[16] R. Muhammad, N. Ahmed, M. Demiral, A. Roy, V.Silberschmidt, Computational Study of Ultrasonically-Assisted Turning of Ti alloys[J], Advanced Materials Research, Vol. 223 (2011) p. 30-36.
[17] Patil, Sandip, et al. Modelling and simulation of effect of ultrasonic vibrations on machining of Ti6Al4V[J].Ultrasonics 54.2 (2014): 694-705.
[18] 隈部淳一郎, 精密加工振动切削[M]. 1989: 机械工业出版社.
Kumabe J. Precision machining vibration cutting[M].BeiJing: China Machine Press,1989.
[19] Pantalé, O., et al., 2D and 3D numerical models of metal cutting with damage effects[J]. Computer Methods in Applied Mechanics & Engineering, 2004. 193(39–41): p. 4383-4399.
[20] Molinari, A., C. Musquar and G. Sutter, Adiabatic shear banding in high speed machining of Ti–6Al–4V: experiments and modeling[J]. International Journal of Plasticity, 2002. 18(4): p. 443-459.
[21] Kay. Failure Modeling of Titanium6Al4V and 2024-T3 Aluminum with the Johnson-Cook Material Model[R]. Springfield, Virginia: Nation Technical Information Service(NTIS), 2003:1-24
[22] 赵威, 何宁与李亮, 强化冷却下正交切削Ti6Al4V合金的有限元分析[J]. 华南理工大学学报 (自然科学版), 2006. 34(7): 第40-44页.
ZhaoWei,HeNing and ,LiLiang, Finite Element Analysis of Orthogonal Cutting of Ti6Al4V Alloy in Enhanced Cooling Condition [J]. Journal of South China University of Technology(Natural Science Edition), 2006. 34(7): p40-44.
[23] 姚永琪, 郭乙木, 朱凌,等. 高速切削时摩擦系数对切削影响的数值模拟[J]. 工程设计学报, 2004, 11(1):31-36.
YaoYongqi,GuoYimu,ZhuLin et al. Numerical simulation for effect of friction coefficient under high-speed cutting by FEA[J], JOURNAL OF ENGINEERING DESIGN, 2004, 11(1):p31-36.
[24] 孟龙, 钛合金高速铣削过程建模[D], 上海交通大学., 2013.
MengLong,. FINITE ELEMENT MODELLING ON HIGH-SPEED MILLING PROCESS OF TITANIUM ALLOY[D], Shanghai Jiao Tong University,2013.