振动利用对FDM薄板机械性能的影响研究

姜世杰,Yannick Siyajeu,孙宁宁,李鹤,闻邦椿

振动与冲击 ›› 2019, Vol. 38 ›› Issue (9) : 22-26.

PDF(1857 KB)
PDF(1857 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (9) : 22-26.
论文

振动利用对FDM薄板机械性能的影响研究

  • 姜世杰,Yannick Siyajeu,孙宁宁,李鹤,闻邦椿
作者信息 +

Effects of vibration application on mechanical performances of FDM sheets

  • JIANG Shijie, SIYAJEU Yannick, SUN Ningning, LI He, WEN Bangchun
Author information +
文章历史 +

摘要

熔融沉积成型(Fused Deposition Modeling,FDM)是当今迅速发展起来的一种快速成型技术,然而其产品在机械强度方面很难与传统加工方式生产的零件相媲美,成为制约该技术发展的重要因素之一。本文首次将振动应用于FDM 3D打印过程以期提高制品的机械性能。首先,将振动引入FDM过程,完成了振动式FDM 3D打印机的改装;然后分别制备了振动引入前、后Z和X两个方向的拉伸试件,并完成了抗拉强度的检测试验;最后,对比分析利用振动加工的FDM试件和普通试件的实验结果,以研究振动对FDM薄板抗拉强度和正交各向异性的影响。试验表明,利用振动能够显著提高FDM薄板Z方向的抗拉强度、弹塑性以及稳定性,并能明显降低FDM薄板的正交各向异性。

Abstract

Fused deposition modeling (FDM) is a fast growing rapid prototyping technology. However, the built parts are hardly comparable to those produced by the traditional means in mechanical strength, which is one of the most obvious defects that hinder the development of rapid prototyping technology. For the first time, this paper utilized vibration into the FDM process to improve the mechanical property of FDM parts. Firstly, a vibrating FDM 3D printer was set up to introduce vibration into the FDM process; Secondly, the samples with and without applied vibration in Z and X direction were manufactured, and corresponding tensile tests were performed; Finally, the effect of applying vibration on the tensile strength and anisotropy of FDM plates was experimentally investigated through the comparison between samples with and without applied vibration. It is shown that the vibration can significantly improve the built parts’ tensile strength and their plasticity in Z direction, as well as the stability. In addition, the vibration could decrease the orthogonal anisotropy of the FDM samples greatly.

关键词

熔融沉积成型 / 振动 / 抗拉强度 / 正交各向异性

引用本文

导出引用
姜世杰,Yannick Siyajeu,孙宁宁,李鹤,闻邦椿. 振动利用对FDM薄板机械性能的影响研究[J]. 振动与冲击, 2019, 38(9): 22-26
JIANG Shijie, SIYAJEU Yannick, SUN Ningning, LI He, WEN Bangchun. Effects of vibration application on mechanical performances of FDM sheets[J]. Journal of Vibration and Shock, 2019, 38(9): 22-26

参考文献

[1] Panda S K, Padhee S, Anoop Kumar S, Mahapatra S S. Optimization of fused deposition modelling (FDM) process parameters using bacterial roraging technique[J]. Intelligent information management, 2009, 1(02): 89.
[2] Arivazhagan A, Masood S H. Dynamic mechanical properties of ABS material processed by Fused Deposition Modelling[J]. Int. J. Eng. Res. Appl, 2012, 2(03): 2013-2014.
[3] Boparai K S, Singh R, Singh H. Development of rapid tooling using fused deposition modeling: a review[J]. Rapid Prototyping Journal, 2016, 22: 281-99.
[4] Pruc H, Vietor T. Design for fiber-reinforced additive manufacturing[J]. Journal of Mechanical Design, Transactions of the ASME, 2015, 137.
[5] Serra T, Planell J A, Navarro M. High-resolution PLA-based composite scaffolds via 3-D printing technology[J]. Acta Biomaterialia, 2013, 9: 5521-5530.
[6] Decuir F, Phelan K, Hollins B C. Mechanical strength of 3-D printed filaments[C]. Biomedical Engineering Conference (SBEC), 2016 32nd Southern. IEEE, 2016.
[7] Griffiths C A, Howarth J, De Almeida-Rowbotham, et al. A design of experiments approach to optimise tensile and notched bending properties of fused deposition modelling parts[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2016, 230: 1502-1512.
[8] Rezayat H, Zhou W, Siriruk A, Penumadu D, et al. Structure-mechanical property relationship in fused deposition modelling[J]. Materials Science and Technology, 2015, 31: 895-903.
[9] Domingo-Espin M, Borros S, Agullo N, et al. Influence of building parameters on the dynamic mechanical properties of polycarbonate fused deposition modeling parts[J]. 3d Printing And Additive Manufacturing, 2014, 1: 70-77.
[10] Mohamed O A, Masood S H, Bhowmik J L. Optimization of fused deposition modeling process parameters: a review of current research and future prospects[J]. Advances in Manufacturing, 2015, 3: 42-53.
[11] Shaffer S, Yang K, Vargas J, et al. On reducing anisotropy in 3D printed polymers via ionizing radiation[J]. Polymer, 2014, 55: 5969-5979.
[12] Carneiro O S, Silva A F, Gomes R. Fused deposition modeling with polypropylene[J]. Materials & Design, 2015, 83: 768-776.
[13] Narahara H, Shirahama Y, Koresawa H. Improvement and evaluation of the interlaminar bonding strength of FDM parts by atmospheric-pressure plasma[J]. Procedia CIRP, 2016, 42: 754-9.
[14] Stava O, Vanek J, Benes B, et al. Stress relief: improving structural strength of 3D printable objects[J]. ACM Trans. Graph., 2012, 31: 1-11.
[15] Foroozmehr E, Lin D, Kovacevic R. Application of vibration in the laser powder deposition process[J]. Journal of Manufacturing Processes, 2009, 11, 1: 38-44

PDF(1857 KB)

Accesses

Citation

Detail

段落导航
相关文章

/