结合桥址处实际工程条件,某跨海大桥主桥选取了286m跨下承式双边钢箱主梁提篮拱桥及(125+286+125)m双塔三跨双索面预应力混凝土梁斜拉桥2种桥型方案进行研究比选;对下承式提篮拱桥方案,提出了4种总体施工方案进行研究比选;设计推荐采用拱轴系数1.5、矢跨比1/5、陀螺形钢箱截面拱肋及双边钢箱主梁的286m跨下承式提篮拱桥,提出采用半潜驳船并利用潮汐差进行拱梁整体浮运架设施工。针对该桥质量大、重心高、高桩承台及场地特征周期长等不利抗震条件,采用球型钢支座及纵向粘滞阻尼器共同进行减隔震,并采用非线性时程法及时域显式降维迭代,分别进行减隔震元器件参数优化及结构抗震分析;计算结果显示,拱桥结构响应对粘滞阻尼器阻尼系数C较敏感,对速度指数 敏感性较小,设置减隔震系统后,梁端的纵桥向位移得到明显控制,降幅达到61.5%,拱肋轴力降低5.7%~19.6%,拱肋弯矩降低8.9%~59.0%,拱脚处内力降幅最大,主桥抗震满足要求。
Abstract
Combined with the actual engineering conditions at the bridge site,two kinds of bridge types were chosen for the main bridge of a sea-crossing bridge: 286m span through double side steel box main girder lifting basket arch bridge and (125 + 286 + 125m) m double tower, three span and double cable plane prestressed concrete girder cable-stayed bridge.For the arch bridge kind,four kinds of overall construction schemes are put forward to study and select, and 286m span through basket arch bridge with arch axis coefficient 1.5, rise-span ratio 1 / 5, gyroscopic steel box section arch rib and bilateral steel box main beam was recommended. The semi-submersible barge under tidal difference are used for the whole arch beam floating and erecting construction. In view of the unfavorable seismic conditions of the bridge, such as large mass, high center of gravity, high pile cap and long site characteristic period, the ball steel bearing and longitudinal viscous dampers are both used for seismic reduction and isolation, and the nonlinear time history method and the explicit dimension-reduction iteration in time-domain are adopted. The results show that the structural response of the arch bridge is sensitive to damping coefficient C of viscous dampers, and less sensitive to velocity index. After setting up the isolation system,the longitudinal displacement of the girder end is obviously under control, the decrease is 61.5%, the axial force of the arch rib is decreased by 5.7% ~ 19.6%, the bending moment of the arch rib is decreased by 8.9% ~ 59.0%, the internal force at the arch foot is decreased mostly, and seismic resistance of the main bridge meets the requirements.
关键词
拱桥 /
桥型方案 /
减隔震 /
粘滞阻尼器 /
时域显式降维迭代
{{custom_keyword}} /
Key words
arch bridge /
bridge type scheme /
seismic reduction and isolation /
viscous damper /
time-domain explicit dimension-reduction iteration
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 姚昌荣,李亚东,梁东,等.山区大跨度桥梁结构选型[J].桥梁建设,2012,42(06):81-86.
YAO Changrong,LI Yadong,LIANG Dong,et al.
Structural type selection for long span bridges in
mountainous region [J].Bridge Construction, 2012,42 (06):81-26.
[2] 吴梅容,卓卫东,孙颖,等.中承式钢管混凝土拱桥动力特性分析[J].振动与冲击,2017,36(24):85-90+102.
WU Meirong,ZHUO Weidong,SUN Ying,et al. Dynamic characteristics of half-through oncrete-filled
steel tubular arch bridges [J]. Journal of Vibration and Shock, 2017,36(24):85-90+102.
[3] 文功启.128m下承式尼尔森提篮系杆拱桥设计及其应用[J].交通科技,2014(01):11-13.
WEN Gongqi.Design and application of 128m a- shaped tied arch bridge of nielsen system [J]. Transportation Science Technology, 2014(01):11-13
[4] 范波涛. 钢筋混凝土系杆拱桥稳定性的非线性分析[D].武汉理工大学,2011.
FAN Botao.Nonlinear analysis of spatial stability of reinforced concrete arch bridge[D].Hu'bei: Wuhan University of Technology,2011.
[5] 戴利民.独塔协作体系斜拉桥设计参数研究[J].结构工程师,1999(03):7-13.
DAI Limin.Studies of design parameter on cable- stayed bridge of single-Tower cooperative system [J].Structural Engineers,1999(03):7-13.
[6] 王瑛.金水沟大桥桥型方案比选研究[D].长安大学,2014.
WANG Ying.Study of scheme comparison for jin shuigou large bridge[D].Xi'an Chang'an University,
2014.
[7] 黄燕庆,王东晖,张燕飞.杭州湾跨海大桥引桥方案构思与设计[J].桥梁建设,2006(03):20-23.
HUANG Yanqing,WANG Donghui, ZHAN Yanfei. Conceptual considerations and design of approach spans of hang zhou bay-Sea-crossing bridge [J]. Bridge Construction,2006(03):20-23.
[8] 梁立农,何海,魏朝柱,等.广州南沙凤凰三桥方案设计[J].广东土木与建筑,2014,21(12):41-46.
LIANG Linong,HEHai,WEIChaozhu,et al.Guang
zhou nansha phoenix bridge scheme design [J]. Guangdong Architecture Civil Engineering,2014,21
(12):41-46.
[9] 王贵春,王艳,陈淮.日本千岁大桥的施工[J].世界桥梁,2006(3):5-7.
WANG Guichun, WANG Yan, CHEN Huai. Construction of Qiansui Bridge in Japan [J]. World Bridges, 2006 (3): 5-7.
[10] 方圆,席进.大跨度系杆拱桥合理抗震体系研究[J].结构工程师,2015,31(05):65-70.
FANG Yuan,XI Jin. Appropriate Earthquake Resistance systems for long-span tied arch bridges [J]. Structural Engineers,2015,31(05):65-70.
[11] DBJ 15-92-2013高层建筑混凝土结构技术规程[S].广州:2013.
DBJ 15-92-2013 Technical specification for concrete structures of tall building[S].Guangzhou:2013.
[12] 苏成,李保木,陈太聪,等.粘滞阻尼器减震结构非线性随机振动的时域显式降维迭代随机模拟法[J].计算力学学报,2016,33(04):556-563.
SU Cheng,LI Baomu,CHEN Taicong,et al. Nonlinear random vibration analysis of energy-dissipation structures with viscous dampers by random simulation method based on explicit time-domain dimension-reduced iteration scheme [J].Chinese Journal of Computational Mechanics,2016,33(04) : 556-563.
[13] Su C, Liu X L, Li B M,et al. Inelastic response analysis of bridges subjected to non-stationary seismic excitations by efficient MCS based on explicit time-domain method. Nonlinear Dynamics, 2018, DOI: 10.1007/s11071-018-4477-6.
[14] Su C, Li B M, Chen T C,et al. Stochastic optimal design of nonlinear viscous dampers for large-scale structures subjected to non-stationary seismic excitations based on dimension-reduced explicit method. Engineering Structures, 2018, 175: 217-230.
[15] 刘振宇,李乔,蒋劲松,等.南宁大桥粘滞阻尼器参数分析[J].桥梁建设,2007(04):25-28.
LIU Zhenyu,LI Qiao,JIANG Jingsong,et al. Analysis of parameters of nanning bridge viscous dampers [J].Bridge Construction ,2007(04):25-28.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}