基于压电分流阻尼技术的新型减振环的参数优化分析

何晋丞,陈国平,何欢

振动与冲击 ›› 2019, Vol. 38 ›› Issue (9) : 260-265.

PDF(1276 KB)
PDF(1276 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (9) : 260-265.
论文

基于压电分流阻尼技术的新型减振环的参数优化分析

  • 何晋丞,陈国平,何欢
作者信息 +

Parametric optimization analysis for vibration reduction rings based on piezoelectric shunt damping technique

  • HE Jincheng, CHEN Guoping, HE Huan
Author information +
文章历史 +

摘要

基于压电分流阻尼技术,设计了一种采用压电堆叠的新型减振环。该减振环可以有效降低传动系统通过轴和轴承传递到支承的振动,同时避免压电堆叠承受切向应力,增加了压电堆叠的使用寿命。提出了新的压电减振环被动控制理论模型,根据压电堆叠的压电方程和机电耦合特性推导了减振环的复刚度和系统的力传递率函数。提出了三种外接电路形式,根据系统力传递函数使用MATLAB程序优化分流电路中电子元件的参数。通过数值仿真计算,可以得出安装减振环后系统力传递率函数峰值明显降低。说明减振环对轴承-支承系统具有很好的减振效果。

Abstract

Based on the piezo shunt damping technology, a new type of vibration ring was designed with piezoelectric stack. The vibration ring can effectively reduce the vibration of the transmission system passing through the shaft and bearing to support. It can avoid the piezoelectric stack to bear tangential stress and increase the service life of the piezoelectric stack. A new passive control model of piezoelectric vibration ring was proposed. The complex stiffness of the vibration ring and the force transfer rate function of the system were derived. Three kinds of external circuit form were put forward. MATLAB program was used to optimize the parameters of electronic components in a shunt circuit according to the system force transfer function. Through numerical simulation, it was found that the peak value of the force transfer rate function of the system is obviously reduced after the installation of the vibration ring.

关键词

减振环 / 压电堆叠 / 压电分流阻尼技术 / 振动被动控制

Key words

 the vibration ring / piezoelectric stack / piezoelectric shunt damping technology / passive vibration control

引用本文

导出引用
何晋丞,陈国平,何欢. 基于压电分流阻尼技术的新型减振环的参数优化分析[J]. 振动与冲击, 2019, 38(9): 260-265
HE Jincheng, CHEN Guoping, HE Huan. Parametric optimization analysis for vibration reduction rings based on piezoelectric shunt damping technique[J]. Journal of Vibration and Shock, 2019, 38(9): 260-265

参考文献

[1] 尹双, 文立华, 刘勇. 基于压电分流阻尼技术的弹性环式隔振器阻尼研究[J]. 机械强度, 2015, v.37;No.181(5):823-827.
Yin Shuang, Wen Lihua, Liu Yong. Study on the damping of elastic ring vibration isolator based on Piezoelectric Shunt Damping Technology[J]. Journal of Mechanical Strength, 2015, v.37;No.181(5):823-827.
[2] Forward R L. Electronic damping of vibrations in optical structures[J]. J Applied Optics, 1979, 18(5):690-697.
[3] Hagood N W, Flotow A V. Damping of structural vibrations with piezoelectric materials and passive electrical networks[J]. Journal of Sound & Vibration, 1991, 146(2):243-268.
[4] 杨智春, 王巍, 谷迎松,等. 一种弯曲型压电堆作动器的设计及在振动控制中的应用[J]. 振动与冲击, 2009, 28(9):130-134.
Yang Zhichun, Wang Wei, Gu Ying song, et al. Stack actuator design and application in vibration control of a piezoelectric bending[J]. Journal of Vibration and Shock, 2009, 28(9):130-134.
[5] Ramsay J V, Mugridge E G V. Barium titanate ceramics for fine-movement control[J]. Journal of Scientific Instruments, 1962, 39(12):636 -637.
[6] Atzrodt H, Mayer D, Melz T. Reduction of bearing vibrations with shunt damping[C]// Recent Developments in Acoustics, Noise and Vibration. International Congress on Sound and Vibration, Icsv 2009. Proceedings. Cd-Rom. 2009.
[7] 庞俊恒. 基于压电元件的振动被动控制技术研究[D]. 南京:南京理工大学, 2004.
Pang Junheng. Research on passive vibration control technology based on piezoelectric elements[D]. NanJing: Nanjing University of Aeronautics and Astronautics,2004.
[8] 刘汝寿. 基于压电材料的被动及半主动振动噪声控制[D].南京:南京航空航天大学, 2010.
Liu Rushou. Passive and semi-active vibration noise control based on piezoelectric materials[D].NanJing: Nanjing University of Aeronautics and Astronautics, 2010.
[9] 刘莹. 基于压电元件的被动振动控制的优化设计与实现[D]. 南京:南京理工大学, 2006.
Liu Ying. Optimal design and implementation of passive vibration control based on piezoelectric elements[D]. NanJing: Nanjing University of Science and Technology, 2006.
[10] 刘文武, 翁雪涛, 楼京俊,等. 基于ANSYS对橡胶制品动态分析的谐响应法研究[J]. 武汉理工大学学报(交通科学与工程版), 2010, 34(5):966-968.
Liu Wenwu, Weng Xuetao, Lou Jing Jun, et al. Research on the dynamic analysis of rubber products based on ANSYS[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2010, 34(5):966-968.

PDF(1276 KB)

539

Accesses

0

Citation

Detail

段落导航
相关文章

/