发射段阻尼环对飞轮轮体振动放大的粘弹性阻尼动力吸振抑振机理分析和试验研究

黄修长 1,丁泉惠 1,王勇 2,王森 2,华宏星 1

振动与冲击 ›› 2019, Vol. 38 ›› Issue (9) : 266-270.

PDF(942 KB)
PDF(942 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (9) : 266-270.
论文

发射段阻尼环对飞轮轮体振动放大的粘弹性阻尼动力吸振抑振机理分析和试验研究

  • 黄修长 1 ,丁泉惠 1,王勇 2,王森 2,华宏星 1
作者信息 +

Theoretical analysis and tests for mechanisms of viscoelastic damping ring as a dynamic absorber and vibration amplification of flywheel in launching phase

  •   HUANG Xiuchang 1 Ding Quanhui 1  WANG Yong 2  WANG Sen 2  HUA Hongxing 1
Author information +
文章历史 +

摘要

飞轮在发射段由于受到安装界面的振动与冲击,会发生振动放大现象,为抑制该振动放大,工程界提出了采用阻尼环的抑制方式。但是针对阻尼环抑振机理的研究显见公开文献发表。针对此问题,基于有限元法建立了理论模型,对发射段飞轮轮体振动放大机制和阻尼环抑振机理进行了分析;为了优化粘弹性阻尼参数,建立了飞轮-阻尼环的等效多自由度模型,给出了最优阻尼的表达式。结果表明,飞轮结构的“拍动振型模态”是其在发射段的轴向共振放大模态,导致轮体结构发生挠性大变形;阻尼环能够有效减小飞轮挠性变形的机理主要有两个:一是阻尼环的某阶模态与飞轮结构“拍动振型模态”相互作用,阻尼环充当动力吸振器;二是通过粘弹性阻尼耗能。对安装阻尼环的飞轮进行了实验研究,通过频响函数对比验证了所揭示的机理。

Abstract

Flywheels will undergo resonance amplification under the excitation of vibration and shock of the interface in the launching phase. To suppress this resonance amplification, friction ring has been advanced. However, there were few published literatures on this topic. Aimed at this problem, the theoretical dynamic model is established based on finite element method, the mechanisms of resonance amplification and suppression of friction ring are revealed. An equivalent multi-degrees-of-freedom model is built to get the optimal damping for friction ring. It is demonstrated that the “flap mode” is the modes that result in the amplification and the friction ring works based on two mechanisms, the first one is dynamic vibration absorber for one mode of the friction ring that interacts with the “flap mode” of the flywheels; the second one is the viscoelastic damping that dissipates the energy. Experimental study is carried out and the comparative results concerning frequency response functions are employed to verify the theoretical findings.

关键词

阻尼环 / 振动抑制 / 弹性体动力吸振 / 粘弹性阻尼 / 最优阻尼比

Key words

 friction ring / resonance suppression / dynamic vibration absorber on flexible structure / viscoelastic damping / optimal damping ratio

引用本文

导出引用
黄修长 1,丁泉惠 1,王勇 2,王森 2,华宏星 1. 发射段阻尼环对飞轮轮体振动放大的粘弹性阻尼动力吸振抑振机理分析和试验研究[J]. 振动与冲击, 2019, 38(9): 266-270
HUANG Xiuchang 1 Ding Quanhui 1 WANG Yong 2 WANG Sen 2 HUA Hongxing 1 . Theoretical analysis and tests for mechanisms of viscoelastic damping ring as a dynamic absorber and vibration amplification of flywheel in launching phase[J]. Journal of Vibration and Shock, 2019, 38(9): 266-270

参考文献

[1]https://www.rockwellcollins.com/Data/Products/Space_Components/Satellite_Stabilization_Wheels/RSI_68_Momentum_and_Reaction_Wheels.aspx
[2] 于登云,杨建中等编著. 航天器机构技术[M]. 北京:中国科学技术出版社, 2011年1月第一版。
YU Deng-yun, YANG Jian-zhong, Mechanism technology on spacecraft [M]. China Science and Technology Press, 2011, First Edition.
[3] Y. Shen, L. Chen, X. Yang, D. Shi, J. Yang. Improved design of dynamic vibration absorber by using the inerter and its application in vehicle suspension[J]. Journal of Sound and Vibration, 361 (2016) 148-158.
[4]J. Shi, Q. Song, Z. Liu, Y. Wan. Formulating a numerically low-cost method of a constrained layer damper for vibration suppression in thin-walled component milling and experimental validation[J]. International Journal of Mechanical Sciences, 128-129 (2017) 294-311.
[5] A.Stabile, G. S.Aglietti, G. Richardson, G, Smet. Design and verification of a negative resistance electromagnetic shunt damper for spacecraft micro-vibration[J]. Journal of Sound and Vibration, 386(2017) 38-49.
[6] S. Chun, Y. Lee, T. Kim. H∞ optimization of dynamic vibration absorber variant for vibration control of damped linear systems[J]. Journal of Sound and Vibration, 335 (2015) 55-65.
[7] T. Asami, O. Nishihara, A. M. Baz. Analytical Solutions to H∞ and H2 Optimization of Dynamic Vibration Absorbers Attached to Damped Linear Systems[J]. Journal of Vibration and Acoustics, Transactions of the ASME, 124(2002) 284-295.
[8] X.Vu, D. Nguyen, D. Khong, V. Tong. Closed-form solutions to the optimization of dynamic vibration absorber attached to multi-degrees-of-freedom damped linear systems under torsional excitation using the fixed-point theory[J]. Proceedings of IMechE Part K: Journal of Multi-body Dynamics, 2017, 1-16. DOI: 10.1177/1464419317725216.
[9] T. Asami. Optimal Design of Double-Mass Dynamic Vibration Absorbers Arranged in Series or in Parallel[J]. Journal of Vibration and Acoustics, Transactions of the ASME, 2017, 139, 011015:1-16.
[10] Y. Chena, Y. Huang. Timoshenko beam with tuned mass dampers and its design curves[J].  Journal of Sound and Vibration, 278 (2004) 873-888.
[11] S. Krenk, J. Høgsberg. Tuned mass absorber on a flexible structure[J].  Journal of Sound and Vibration, 333 (6) (2014) 1577-1595.
[12]周伟勇, 航天器飞轮动力学建模与振动控制研究[D], 长沙:国防科学技术大学博士学位论文, 2012.10.
ZHOU Weiyong, Research on dynamic modeling and vibration control for the flywheel of spacecraft [D]. Changsha: National University of Defense Technology, 2012.12.

PDF(942 KB)

Accesses

Citation

Detail

段落导航
相关文章

/