基于加权正则化的火箭发动机振动传递路径分析

路广霖 1,罗亚军 1,张希农 1,李录贤 1,马驰骋 2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (9) : 271-276.

PDF(708 KB)
PDF(708 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (9) : 271-276.
论文

基于加权正则化的火箭发动机振动传递路径分析

  • 路广霖 1 ,罗亚军 1 ,张希农 1 ,李录贤 1 , 马驰骋 2
作者信息 +

Vibration transfer path analysis of rocket engine based on weighted regularization

  •   LU Guanglin 1   LUO Yajun 1   ZHANG Xinong 1   LI Luxian 1   MA Chicheng 2
Author information +
文章历史 +

摘要

为了给火箭发动机振动控制提供依据,需要对受到多源激励的发动机进行振动传递路径分析,其主要包括载荷识别和贡献量分析两个环节。为了准确识别发动机多源激励载荷并提供可靠的振动贡献量分析结果,提出一种基于加权正则化的改进传递路径分析技术。首先,推导出了载荷识别相对误差上界,并利用加权矩阵和贝叶斯理论提高载荷识别精度,并基于此提出改进的传递路径分析理论。然后,进行某发动机地面振动试验。最后,根据所提的加权正则化载荷识别理论和参考点响应数据识别了多源激励,并计算分析了不同振源在目标点的振动贡献量。分析结果表明,相较于传统传递路径分析技术,所提方法能更准确地识别多源激励,提供更可靠的振动贡献量分析结果。

Abstract

To provide the basis for vibration control of rocket engine under multi-load, the vibration transfer path analysis (TPA) of the engine is necessary, mainly consisting of load identification and vibration contribution analysis. To identify accurately the engine multi-source excitation and provide reliable analysis results of vibration contribution, an improved TPA based on weighted regularization was proposed. Firstly, the upper bound of relative load identification error was derived and then weighted matrix and Bayesian theory were adopted to improve the accuracy of load recognition, and then the theory of the improved TPA was built. Secondly,a ground vibration testing of the rocket engine was performed to analyze its path contributions. Finally,with the response data of the reference points and the proposed theory of the load identification, the loads on the engine were identified and the vibration contributions of different loads on the target points were calculated and analyzed. The results show that, the proposed TPA is more accurate than the traditional TPA in load identification and vibration contribution analysis.

关键词

多源载荷识别 / 传递路径分析 / 火箭发动机

Key words

multi-load identification / transfer path analysis / rocket engine

引用本文

导出引用
路广霖 1,罗亚军 1,张希农 1,李录贤 1,马驰骋 2. 基于加权正则化的火箭发动机振动传递路径分析[J]. 振动与冲击, 2019, 38(9): 271-276
LU Guanglin 1 LUO Yajun 1 ZHANG Xinong 1 LI Luxian 1 MA Chicheng 2. Vibration transfer path analysis of rocket engine based on weighted regularization[J]. Journal of Vibration and Shock, 2019, 38(9): 271-276

参考文献

[1]  Heuser R E, Timmins A R. A study of first day space malfunctions [J]. Journal of Algebra, 1974, 13(4):517–534.
[2]  Harry H D L, Kern J e. Dynamic environmental criteria [S]. National Aeronautics and Space Administration, 2001.
[3]  Christensen E, Brown A, Frady G. Calculation of dynamic loads due to random vibration environemnts in rocket engine systems [C]. Aiaa/asme/asce/ahs/asc Structures, Structural Dynamics, and Materials Conference. 2013.
[4]  Seijs M V V D, Klerk D D, Rixen D J. General framework for transfer path analysis: history, theory and classification of techniques [J]. Mechanical Systems & Signal Processing, 2016, s 68–69:217-244.
[5] Verheij J W. Measuring sound transfer through resilient mountings for separate excitation with orthogonal translations and rotations [J]. 1980.
[6] Verheij J W. Multi-path sound transfer from resiliently mounted shipboard machinery: experimental methods for analyzing and improving noise control [D]. 1982.
[7] Plunt J. Strategy for transfer path analysis (TPA) applied to vibro-acoustic systems at medium and high frequencies [J]. 1998.
[8] 杨智春, 贾有. 动载荷识别方法的研究进展[J]. 力学学报, 2015, 45(2):384-384.
Yang Z C, Jia Y. Advance of studies on the identi¯cation of dynamic load. Advances in Mechanics, 2015, 45: 201502
[9] Klerk D D, Ossipov A. Operational transfer path analysis: theory, guidelines and tire noise application [J]. Mechanical Systems & Signal Processing, 2010, 24(7):1950-1962.
[10] Janssens K, Gajdatsy P, Gielen L, et al. OPAX: A new transfer path analysis method based on parametric load models [J]. Mechanical Systems & Signal Processing, 2011, 25(4):1321-1338.
[11] Dobson B J, Rider E. A review of the indirect calculation of excitation forces from measured structural response data [J]. ARCHIVE Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science 1989-1996 (vols 203-210), 1990, 204(2):69-75.
[12] Jia Y, Yang Z, Guo N, et al. Random dynamic load identification based on error analysis and weighted total least squares method[J]. Journal of Sound & Vibration, 2015, 358(3):111-123.
[13] Aucejo M, Smet O D. Bayesian source identification using local priors[J]. Mechanical Systems & Signal Processing, 2015, 66:120-136.
[14] Hansen P C, Oleary D P. The use of the L-curve in the regularization of discrete ill-posed problems [J]. SIAM Journal on Scientific Computing, 1993, 14(6): 1487-1503.
[15] Golub G H, Heath M, Wahba G. Generalized cross-validation as a method for choosing a good ridge parameter [J]. Technometrics, 1979, 21(2): 215-223.
[16] Tikhonov A N, Arsenin V Y. Solution of ill-posed problems [J]. Mathematics of Computation, 1977, 32(144):491-491.
[17] Flemming J. Generalized tikhonov regularization: basic theory and comprehensive results on convergence rates [D]. Technische Universität Chemnitz, 2011.

PDF(708 KB)

Accesses

Citation

Detail

段落导航
相关文章

/