伺服关节驱动的柔性臂系统耦合动力学模型辨识与实验

周优鹏1, 陈特欢1, 娄军强1, 马剑强1, 魏燕定2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (9) : 277-284.

PDF(1203 KB)
PDF(1203 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (9) : 277-284.
论文

伺服关节驱动的柔性臂系统耦合动力学模型辨识与实验

  • 周优鹏1, 陈特欢1, 娄军强1, 马剑强1, 魏燕定2
作者信息 +

Coupling dynamic modeling of a flexible manipulator driven by servo joint and test recognition

  • ZHOU Youpeng1, LOU Junqiang1, CHEN Tehuan1, MA Jianqiang1, WEI Yanding2
Author information +
文章历史 +

摘要

针对整个伺服关节驱动的柔性机械臂系统,在考虑其机电、刚柔耦合特性的基础上,理论上进行了动力学建模。分析了包含直流伺服电机、谐波减速器以及伺服驱动器的伺服关节的驱动及摩擦特性,对实验中测到的电机匀速正反转数据进行线性拟合,得到了关节驱动模型中的库伦摩擦力常数和粘滞摩擦力系数。分别建立了从伺服电机驱动电压到光电编码器检测的电机转角、从伺服驱动电压到代表柔性臂振动的应变桥路输出之间的理论传递函数,以伪随机二进制序列为激励信号,通过实验辨识得到了此对应伺服关节柔性臂转动与振动耦合以及机电耦合的两个传递函数,在伪随机和正弦信号激励下,辨识得到的传递函数模型与实际结构的转动位移和振动响应具有较高的一致性。从而得到了伺服关节驱动的柔性臂系统刚柔耦合、机电耦合的动力学模型。

Abstract

For the system of a flexible manipulator driven by servo joint, considering its electromechanical, rigid and flexible coupling characteristics,The dynamic model is carried out theoretically. The driving and friction characteristics of the servo joint,which consists of a DC servo motor, a harmonic gear reducer and a servo controller is proposed. By linear fitting the experimental data of the forward and reverse rotation of the motor, the coulomb friction constant and viscosity friction coefficient are obtained. Then, two transform function model, are proposed. The input and output variables for one model are the control voltage of the servo controller and the motor potion measured by the encoder. And for the other model, are the control voltage of the servo controller and the strain output measured by the strain gauges. Using the Pseudo-random binary sequence(PRBS) as the input signal, the two transform function models of the system are identified by experimental identification. Experimental results show the two identified models are in good agreement with the dynamic response of the experimental setup, both for the PRBS and sinusoidal excitation signals. Accordingly, the coupling dynamic models of the proposed system are obtained.

关键词

柔性机械臂 / 伺服关节 / 耦合动力学 / 实验辨识 / 摩擦特性

Key words

 Flexible Manipulator / Servo Joint / Coupling Dynamics / Experimental Identification / Friction Characteristics

引用本文

导出引用
周优鹏1, 陈特欢1, 娄军强1, 马剑强1, 魏燕定2. 伺服关节驱动的柔性臂系统耦合动力学模型辨识与实验[J]. 振动与冲击, 2019, 38(9): 277-284
ZHOU Youpeng1, LOU Junqiang1, CHEN Tehuan1, MA Jianqiang1, WEI Yanding2. Coupling dynamic modeling of a flexible manipulator driven by servo joint and test recognition[J]. Journal of Vibration and Shock, 2019, 38(9): 277-284

参考文献

[1] Zhao Z L, Qiu Z C, Zhang X M, et al. Vibration control of a pneumatic driven piezoelectric flexible manipulator using self-organizing map based multiple models[J]. Mechanical Systems and Signal Processing, 2016, 70–71:345-372.
[2] 娄军强, 魏燕定, 杨依领, 等. 空间柔性机械臂弯扭耦合振动的主动控制研究[J]. 振动工程学报, 2014, 27(3):400-407.
LOU Junqiang, WEI Yanding, YANG Yiling, el al. Active control of bending-torsion-coupled vibration of a space flexible manipulator[J]. Journal of Vibration Engineering, 2014, 27(3) :400-407.
[3] 张奇, 刘振, 谢宗武, 等. 具有谐波减速器的柔性关节参数辨识[J]. 机器人, 2014, 36(2): 164-170.
ZHANG Qi, LIU Zhen, XIE Zongwu, el al. Parameters identification of flexible joints with harmonic driver[J]. Robot, 2014, 36(2): 164-170.
[4]  Lou J Q, Wei Y D, Yang Y L, et al. Hybrid PD and effective multi-mode positive position feedback control for slewing and vibration suppression of a smart flexible manipulator[J]. Smart Materials and Structures. 24 (2015) 035007(14pp).
[5] Reis J C P, Costa J S D. Motion planning and actuator specialization in the control of active-flexible link robots[J]. Journal of Sound and Vibration, 2012, 331(14):3255-3270.
[6] Chang T K, Spowage A, Chan K Y. Review of Control and Sensor System of Flexible Manipulator[J]. Journal of Intelligent and Robotic Systems, 2015, 77(1):187-213.
[7] Mohamed Z, Sayahkarajy M, Fauzi A A M. Review of modelling and control of flexible-link manipulators[J]. Proceedings of the Institution of Mechanical Engineers Part I Journal of Systems and Control Engineering, 2016, 230(8):861-873.
[8] 孙汉旭,褚明,贾庆轩. 柔性关节摩擦和不确定补偿的小波神经——鲁棒复合控制[J]. 机械工程学报, 2010, 46(13):68-75.
SUN Hanxu, CHU Ming, JIA Qingxuan. Hybrid control using wavelet neural networks and robust method for flexible joint with friction and uncertainties compensation[J]. Journal of Mechanical Engineering, 2010, 46(13):68-75.
[9] 邱志成, 吴传健. 行星减速器驱动旋转双柔性梁T-S模糊振动控制[J]. 振动、测试与诊断, 2016, 36(4): 764-770.
QIU Zhicheng, WU Chuanjian. T-S fuzzy vibration control of rotating double flexible beams driven by planetary reducer[J]. Journal of Vibration, Measurement and Diagnosis, 2016, 36(4): 764-770.
[10] Cambera J C, Feliu-Batlle V. Input-state feedback linearization control of a single-link flexible robot arm moving under gravity and joint friction[J]. Robotics and Autonomous Systems, 2017, 88:24-36.
[11] Bossi L, Rottenbacher C, Mimmi G, et al. Multivariable predictive control for vibrating structures: An application[J]. Control Engineering Practice, 2011, 19(10):1087-1098.
[12] He W, Ouyang Y, Hong J. Vibration Control of a Flexible Robotic Manipulator In the Presence of Input Deadzone[J]. IEEE Transactions on Industrial Informatics, 2017, PP(99):1-1.
[13] Forbes J R, Damaren C J. Single-Link Flexible Manipulator Control Accommodating Passivity Violations: Theory and Experiments[J]. IEEE Transactions on Control Systems Technology, 2012, 20(3):652-662.
[14] Sharma S K, Sutton R, Tokhi M O. Local Model and Controller Network Design for a Single-Link Flexible Manipulator[J]. Journal of Intelligent & Robotic Systems, 2014, 74(3-4):605-623.

PDF(1203 KB)

Accesses

Citation

Detail

段落导航
相关文章

/