指数型随机共振微弱振动信号检测方法

张刚1,2,曹莉2,贺利芳2,易甜2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (9) : 53-61.

PDF(1057 KB)
PDF(1057 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (9) : 53-61.
论文

指数型随机共振微弱振动信号检测方法

  • 张刚1,2,曹莉2,贺利芳2,易甜2
作者信息 +

Weak vibration signal detection method for exponential stochastic resonance systems

  • ZHANG Gang1,2, CAO Li1,  HE Lifang2,  YI Tian2
Author information +
文章历史 +

摘要

在实际工程故障诊断中特征频率信号经常淹没在噪声中,信息提取非常困难。为了提取强噪声背景中的微弱信号,本文将简谐势阱与Gaussian Potential模型相结合,提出一种作用在Duffing方程下的新型指数型双稳随机共振系统。首先,推导逃逸率并研究系统参数对输出信噪比影响;其次,基于指数型双稳随机共振系统对冲击衰减信号以及谐波振动信号进行检测;最后为检测大噪声下多频信号提出指数型双稳随机共振和经验模态分解的微弱信号联合检测方法并应用于轴承故障信号检测中。实验分析及仿真结果表明,指数型双稳随机共振模型在信号检测中是可行的,并且对于多频谐波信号通过随机共振后进行经验模态分解可使检测更加准确,联合检测不仅能识别故障信号,还能识别故障倍频信号。

Abstract

The fault signal is difficult to detect and extract in practical engineering because of its characteristic frequency signals submerged in noise. In order to extract the weak signal in strong background noise, a new bistable stochastic resonance system functions called exponential Duffing bistable combining harmonic Potential model and Gaussian Potential model put forward in this paper. Firstly, the escape rate is derived and the effect on the output signal-to-noise ratio by system parameters are studied. Then, simulation harmonic vibration signal and attenuation impulse signal have demonstrated the feasibility detection performance of exponential bistable stochastic resonance system. Finally, the exponential bistable stochastic resonance with empirical mode decomposition method has taken to detect weak multi-frequency signal under heavy noise and this method also useful for the bearing fault signal detection. The experimental analysis and the simulation results show that exponential bistable stochastic resonance model in signal detection is reliable, and multi-frequency harmonic signal through empirical mode decomposition after the stochastic resonance can get accurate detection, the propose united detection method is effective and reliable in the fault signal detection.

关键词

指数型双稳随机共振 / 经验模态分解 / 故障信号检测

Key words

exponential bistable stochastic resonance / empirical mode decomposition / the fault signal detection

引用本文

导出引用
张刚1,2,曹莉2,贺利芳2,易甜2. 指数型随机共振微弱振动信号检测方法[J]. 振动与冲击, 2019, 38(9): 53-61
ZHANG Gang1,2, CAO Li1, HE Lifang2, YI Tian2. Weak vibration signal detection method for exponential stochastic resonance systems[J]. Journal of Vibration and Shock, 2019, 38(9): 53-61

参考文献

[1] ZHOU B , LIN D . Stochastic resonance in an asymmetric bistable system driven by multiplicative and additive trichotomous noises[J]. Chinese Journal of Physics, 2017, 55(3):1078-1084.
[2] BENZI R, SUTERA A, and VULPIANI A. The mechanism of stochastic resonance[J]. Journal of Physics A, 1981, 14(11) 453-457.
[3] FAUVE S, HESLOT F. Stochastic Resonance in a Bistable System [J]. Phys.Rev.Lett. 1983, 97A (1-2):5-7.
[4] 侯成郭,罗柏文,李地. 线性调频信号的级联随机共振数字化接收[J]. 电子与信息学报,2015,(12):2866-2871.
HOU Cheng-guo, LUO Bo-wen, LI Di. Cascaded Stochastic Resonance for Digitized Receiving of Linear Frequency Modulation Signal[J].Journal of Electronics & Information Technology,2015,(12):2866-2871.
[5] 李国正,张波. 基于Duffing振子检测频率未知微弱信号的新方法[J]. 仪器仪表学报,2017,(01):181-189.
LI Guo-zheng, ZHANG Bo. Novel method for detecting weak signal with unknown frequency based on duffing oscillator[J].Chinese Journal of Scientific Instrument,2017,(01):181-189.
[6] 焦尚彬, 任超, 黄伟超,等. α稳定噪声环境下多频微弱信号检测的参数诱导随机共振现象[J]. 物理学报, 2013, 62(21):000026-35.
JIAO Shang-bing, REN chao, HUANG Wei-chao, et al. Parameter-induced stochastic resonance in multi-frequency weak signal detection withαstable noise [J]. Acta Physica Sinica, 2013, 62(21):000026-35.
[7] QIAO Z, LEI Y , LIN J, et al. An adaptive unsaturated bistable stochastic resonance method and its application in mechanical fault diagnosis[J]. Mechanical Systems & Signal Processing, 2017, 84:731-746.
[8] 周玉飞, 王红军, 左云波. 基于级联随机共振系统的微弱故障信息特征获取[J]. 北京信息科技大学学报(自然科学版), 2016, 31(3):32-36.
ZHOU Yu-fei, WANG Hong-jun, ZUO Yun-bo. Feature acquisition of weak fault information based on cascaded stochastic resonance system[J].Journal of Beijing Information Science & Technology University(Nature Science Edition), 2016, 31(3):32-36.
[9] 陆思良,苏云升,赵吉文,等.基于二维互补随机共振的轴承故障诊断方法研究[J].振动与冲击,2018,37 (04): 7-12+27.
LU Si-liang, Su Yun-sheng, ZHAO Ji-wen, et al. Bearings fault diagnosis based on two-dimensional complementary stochastic resonance[J]. Journal of vibration and shock, 2018, 37(04):7-12+37.
[10] Gammaitoni L, Marchesoni F, Menichellasaetta E, et al. Stochastic resonance in bistable systems.[J]. Physical Review Letters, 1989, 62(4):349-352.
[11] Gammaitoni L, Menichellasaetta E, Santucci S, et al. Periodically time-modulated bistable systems: Stochastic resonance.[J]. Physical Review A, 1989, 40(4):2114-2119.
[12] Almog R, Zaitsev S, Shtempluck O, et al. Signal amplification in a nanomechanical Duffing resonator via stochastic resonance[J]. Applied Physics Letters, 2006, 90(1):565-195.
[13] WANG F ZH, QING G R. Experimental Analysis of Stochastic Resonance in a Duffing System[J]. Chinese Physics Letters, 2003, 20(1):28-30.
[14] LENG Y G, LA  Z H, FAN S B, et al. Large parameter stochastic resonance of two-dimensional Duffing oscillator and its application on weak signal detection[J]. Acta Physica Sinica, 2012, 61(23):316-322.
[15] LAI Z H, LENG Y G. Weak-signal detection based on the stochastic resonance of bistable Duffing oscillator and its application in incipient fault diagnosis[J]. Mechanical Systems & Signal Processing, 2016, 81:60-74.
[16] LI J. Levy noise induced stochastic resonance and phase transition in Duffing system [J]. Journal of Dynamics & Control, 2012.
[17] ZHANG J, ZHANG T. Parameter-induced stochastic resonance based on spectral entropy and its application to weak signal detection.[J]. Review of Scientific Instruments, 2015, 86(2):025005.
[18] 张刚,宋莹,张天骐,胡韬,崔莹莹. Levy噪声下一阶线性系统的弱信号复原分析[J]. 仪器仪表学报,2016,(01):109-118.
.ZHANG Gang, SONG Ying, ZHANG Tian-qi, et al.Weak signal recovery analysis in first-order linear system under Levy noise[J]. Chinese Journal of Scientific Instrument,2016,(01):109-118.
[19] 李宏坤, 张晓雯, 贺长波, 等. 利用随机共振的叶片裂纹微弱信息增强方法 [J]. 机械工程学报, 2016, 52(1):94-100
LI Hong-kun, ZHANG Xiao-wen, HE Chang-bo, et al.  Weak fault enhancement method for blade crack by using stochastic resonance [J]. Journal of Mechanical Engineering, 2016, 52(1): 94-100.
[20] 冷永刚, 赖志慧. 基于Kramers逃逸速率的Dung振子广义调参随机共振研究[J]. 物理学报, 2014, 63(2):34-42.
LENG Yong-gang, LAI Zhi-hui. Generalized parameter-adjusted stochastic resonance of Duffing oscillator based on Kramers rate[J].Acta Physica Sinica,2014, 63(2):34-42.
[21] 张刚, 宋莹, 张天骐. Levy噪声驱动下指数型单稳系统的随机共振特性分析[J]. 电子与信息学报, 2017, 39(4):893-900.
ZHANG Gang, SONG Ying, ZHANG Tian-qi. Characteristic Analysis of Exponential Type Monostable Stochastic Resonance under Levy Noise[J].Journal of Electronics & Information Technology,2017, 39(4):893-900.
[22] KENNEDY J. Particle Swarm Optimization [M]. Springer US, 2011. 47(1): 540-546.
[23] 韩东颖,丁雪娟,时培明. 基于自适应变尺度频移带通随机共振降噪的EMD多频微弱信号检测[J]. 机械工程学报,2013,(08):10-18.
HAN Dong-ying, DING Xue-juan, SHI Pei-ming. Multi-frequency Weak Signal Detection Based on EMD After De-noising by Adaptive Re-scaling Frequency-shifted Band-pass Stochastic Resonance[J].Journal of mechanical engineering,2013,(08):10-18.
[24] QIAO Z, LEI Y, LIN J, et al. Stochastic resonance subject to multiplicative and additive noise: The influence of potential asymmetries[J]. Physical Review E, 2016, 94(5-1):052214.
[25] SHI P M, DING X J, HAN D Y. Study on multi-frequency weak signal detection method based on stochastic resonance tuning by multi-scale noise [J]. Measurement, 2014, 47(1):540-546.
[26] ZHOU P, LU S, LIU F, et al. Novel synthetic index-based adaptive stochastic resonance method and its application in bearing fault diagnosis[J]. Journal of Sound Vibration, 2017, 391:194-210.

PDF(1057 KB)

442

Accesses

0

Citation

Detail

段落导航
相关文章

/