振动响应传递率的动力学特性研究及其在工作模态分析中的应用

李星占1,2,董兴建2,岳晓斌1,黄文1,彭志科2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (9) : 62-70.

PDF(2044 KB)
PDF(2044 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (9) : 62-70.
论文

振动响应传递率的动力学特性研究及其在工作模态分析中的应用

  • 李星占1,2,董兴建2,岳晓斌1,黄文1,彭志科2
作者信息 +

Dynamic characteristics of vibration response transmissibility and its application in operational modal analysis

  • LI Xingzhan1,2,DONG Xingjian2, YUE Xiaobin1, HUANG Wen1, PENG Zhike2
Author information +
文章历史 +

摘要

振动响应传递率描述了多自由度系统中各自由度响应之间的关系,近年来在多个领域得到了广泛的应用,特别是在工作模态分析方面,获得了瞩目的应用成果。但对于振动响应传递率的动力学特性,一直缺乏完整的、系统的分析。为此,将从振动响应传递率的基础概念出发,对不同输入情况下,振动响应传递率在系统零极点的特性和对系统输入的依赖性进行解析推导分析;然后,通过数值算例对振动响应传递率的特性进行仿真验证;最后,应用振动响应传递率对非白噪声激励下梁结构的工作模态进行了辨识,表明基于振动响应传递率的工作模态分析方法能够避免虚假模态对辨识结果的影响。

Abstract

Vibration response transmissibility describes the relationships of responses of each position in muti-degree of freedom (MDOF) system. It has been widely used in many fields, and has achieved remarkable application especially in operation modal analysis. But, there still lacks the systematic analysis about the dynamic characteristics of vibration transmissibility. Based on the definition of vibration transmissibility, this paper analyzes the characteristics of transmissibility at zeros and poles of system, and discusses the independence of transmissibility to the system input using analytic derivation. Then, numerical cases are used to validate these characteristics. Finally, vibration transmissibility are applied to identify the modal parameters of beam structure under non-white excitations. The results showed that transmissibility based operational modal analysis method could avoid the influence of harmonic modal.             

关键词

振动传递率 / 系统零极点 / 工作模态分析 / 虚假模态

Key words

vibration transmissibility / zeros and poles / operational modal analysis / harmonic modal

引用本文

导出引用
李星占1,2,董兴建2,岳晓斌1,黄文1,彭志科2. 振动响应传递率的动力学特性研究及其在工作模态分析中的应用[J]. 振动与冲击, 2019, 38(9): 62-70
LI Xingzhan1,2,DONG Xingjian2, YUE Xiaobin1, HUANG Wen1, PENG Zhike2. Dynamic characteristics of vibration response transmissibility and its application in operational modal analysis[J]. Journal of Vibration and Shock, 2019, 38(9): 62-70

参考文献

[1] LAW S, LI J, DING Y. Structural response reconstruction with transmissibility concept in frequency domain [J]. Mechanical Systems and Signal Processing, 2011, 25(3): 952-968.
[2] MAIA N M, URGUEIRA A, ALMEIDA R. An Overview of the Transmissibility Concept and Its Application to Structural Damage Detection [M]. Topics in Modal Analysis I, Volume 5. Springer. 2012: 137-151.
[3] WEIJTJENS W, DE SITTER G, DEVRIENDT C, et al. Transmissibility based operational modal analysis: on the use of the pseudo inverse approach[C]//Proceedings of the ISMA, 2012.
[4] URGUEIRA A P, ALMEIDA R A, MAIA N M. On the use of the transmissibility concept for the evaluation of frequency response functions [J]. Mechanical Systems and Signal Processing, 2011, 25(3): 940-951.
[5] LAGE Y, MAIA N, NEVES M, et al. Force identification using the concept of displacement transmissibility [J]. Journal of Sound and Vibration, 2013, 332(7): 1674-1686.
[6] GUASCH O, GARC A C, JOV J, et al. Experimental validation of the direct transmissibility approach to classical transfer path analysis on a mechanical setup [J]. Mechanical Systems and Signal Processing, 2013, 37(1): 353-369.
[7] DEVRIENDT C, GUILLAUME P. The use of transmissibility measurements in output-only modal analysis [J]. Mechanical Systems and Signal Processing, 2007, 21(7): 2689-2696.
[8] DEVRIENDT C, GUILLAUME P. Identification of modal parameters from transmissibility measurements [J]. Journal of Sound and Vibration, 2008, 314(1): 343-356.
[9] DEVRIENDT C, DE SITTER G, GUILLAUME P. An operational modal analysis approach based on parametrically identified multivariable transmissibilities [J]. Mechanical Systems and Signal Processing, 2010, 24(5): 1250-1259.
[10] DEVRIENDT C, WEIJTJENS W, DE SITTER G, et al. Combining multiple single-reference transmissibility functions in a unique matrix formulation for operational modal analysis [J]. Mechanical Systems and Signal Processing, 2013, 40(1): 278-287.
[11] WEIJTJENS W, DE SITTER G, DEVRIENDT C, et al. Operational modal parameter estimation of MIMO systems using transmissibility functions [J]. Automatica, 2014, 50(2): 559-564.
[12] WEIJTJENS W, DE SITTER G, DEVRIENDT C, et al. Operational Modal Analysis Based on Multivariable Transmissibility Functions: Revisited [M]. Topics in Dynamics of Civil Structures, Volume 4. Springer. 2013: 317-326.
[13] 周思达, 刘莉, 杨武,等. 基于响应传递率的非白随机激励仅输出结构模态参数辨识[J]. 振动与冲击, 2014, 33(23): 47-52.
ZHOU Si-da, LIU Li, YANG Wu, et al. Output-only structural modal parameter estimation under no-white excitations based on response transmissibility [J]. Journal of Vibration and Shock, 2014, 33(23): 47-52.
[14] 张永年, 王彤, 夏遵平. 基于传递率函数的运行模态分析方法[J]. 振动、测试与诊断, 2015, 35(5): 945-949.
ZHANG Yong-nian, WANG Tong, XIA Zun-ping. Operational Modal analysis based on transmissibility function [J]. Journal of Vibration measurement & Diagnosis, 2015, 35(5): 945-949.
[15] Lage Y E, Neves M M, Maia N M M, et al. Force transmissibility versus displacement transmissibility [J]. Journal of Sound & Vibration, 2014, 333(22): 5708-5722.
[16] 张昱, 朱彤, 周晶. 多自由度系统中标量传递率的不变性及其应用[J]. 振动与冲击, 2015, 34(8): 151-156.
ZHANG Yu,ZHU Tong,ZHOU Jing. Invariability of scalar transmissibility in a MDOF system and its application [J]. Journal of Vibration and Shock, 2015, 34(8): 151-156.
[17] 张义民, 张守元, 李鹤, 等. 运行模态分析中谐波模态识别方法研究及应用[J]. 振动、测试与诊断, 2008, 28(3):197-200.
Zhang Yi-min, Zhang Shou-yuan, Li He, et al. Harmonic mode identification in the operational modal analysis and its application [J].  Journal of Vibration, Measurement & Diagnosis, 2008, 28(3): 197-200.
  
 

PDF(2044 KB)

828

Accesses

0

Citation

Detail

段落导航
相关文章

/