高速/超高速侵彻问题一直是武器设计者和防护工程专家关注的焦点问题之一。随着撞击速度的提高,弹体由刚体侵彻转入变形、流体侵彻状态,进而导致侵彻深度不再随速度呈单一上升趋势。为预测大着速范围下弹体的侵彻状态,本文基于弹体质量守恒、动量守恒及弹体动态强度计算方法,建立了弹体侵彻过程中的动力学平衡方程,进而确定高速侵彻临界速度。在与已有实验结果对比验证的基础上,分析了不同弹靶参数对侵彻临界速度的影响规律。结果表明:随着弹体静态屈服强度增大,弹体的变形长度减小,弹体的临界侵彻速度增大;弹靶塑性波波速等参数对高速侵彻状态临界速度也有显著影响。
Abstract
In order to destroy protected fortifications,researchers are putting more and more attention on hypervelocity penetration. With the increase of impact velocity, rigid penetration of the projectile will transfer to the deformation and hydrodynamic penetration. During this process, the depth of penetration (DOP) of long rod projectile (LRP) may change at a transition point form increase to decrease. Based on conservation laws of quality and momentum, theoretical equations were established to calculate the transition velocity between deformation and hydrodynamic penetration. Also the influence of the penetrator and target parameters on the transition velocity were analyzed after verifying the reliability of calculation model. The calculation results show that with the increasing of static yield strength, deformation length of the projectile is decreased, the transition velocity between deformation penetration and hydrodynamic penetration are decreased. Accordingly, projectile and target plastic wave velocity have significantly influences on the critical velocity.
关键词
爆炸力学 /
高速侵彻 /
侵彻状态 /
临界速度 /
弹体变形
{{custom_keyword}} /
Key words
explosion mechanics /
hypervelocity penetration /
state of penetration /
transition velocity /
projectile deformation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 何翔,徐翔云,孙桂娟,等.弹体高速侵彻混凝土的效应实验[J].爆炸与冲击,2010,30(1):1-6.
He Xiang,Xu Xiang yun,Sun Guijuan Experimental investigation on projectiles' high-velocity penetration into concrete targets[J].Explosion and Shock Waves,2010,30(1):1-6.
[2] 程怡豪.超高速弹体撞击混凝土和岩石毁伤机理研究[D].中国人民解放军理工大学,2016.
[3] Weirauch G. Das verhalfen von kufer sufender maufftreffen auf verschiedene werkstuffe mit gesch windig keiten zwischen 50m/s and 1650m/s[D]. Karlsruhe: University of Karlsruhe, 1971.
[4] Johnson W. Impact strength of materials[M]. London: Edward Arnold,1972.
[5] Walters W P,Zukas J A.成型装药原理及应用[M].王树奎,贝静芬,译.北京:兵器工业出版社,1989:139-140.
[6] ФОМИН В М, ГУЛИДОВ А И, САПОЖНИКОВ Г А. Высокоскоростное взаимодействие тел[M]. Новосибирск: Изд-воСиб. отд-нияРос АН, 1999.
[7]Tate A. A possible explanation for the hydrodynamic transition in high speed impact[J]. International Journal of Mechanical Sciences,1977,19(2):121-123.
[8] 楼建锋. 侵彻半无限厚靶的理论模型与数值模拟研究[D].中国工程物理研究院,2012.
[9] 兰彬. 长杆弹侵彻半无限靶的数值模拟和理论研究[D].中国科学技术大学, 2008.
[10] Forrestal M J,Piekutowski A J. Penetration experiments with 6061-T6511 Aluminum targets and spherical-nose steel projectiles at striking velocities between 0.5 and 3.0 km/s[J]. International Journal of Impact Engineering,2000,24(1): 57-67.
[11] Forrestal M J,T zou D Y, Askari E,et al. Penetration into ductile metal targets with rigid spherical-nose rods[J]. International Journal of Impact Engineering, 1995,16(5):699-710.
[12] 何雨. 长杆弹撞击下金属靶板侵彻与穿透的进一步研究[D],中国科学技术大学,2013.
[13] 张晓晴,杨桂通,黄小清.柱形平头弹墩粗变形的理论分析[J].华南理工大学学报自然科学版,2005,33(1):32-36.
Zhang Xiaoqing,Yang Guitong,Huang Xiaoqing. Theoretical analysis of the mushrooming deformation of flattened cylindrical projectile. Journal of South China University of Technology,2005,33(1):32-36.
[14] 高光发,李永池,黄瑞源.长杆弹侵彻半无限靶板的影响因素及其影响规律[J].弹箭与制导学报,2014,34(3):56-62.
Gao Guangfa,Li Yongchi, Huang Ruiyuan. Influnce fators on penetration efficiency for long-rod projectile vertically penetrating semi-infinite target and its rules,Journal of Projectiles,Rockets,Missles and Guidance,2014,34(3):56-62.
[15] Perzyna P .Fundamental problems in visco-plasticity . Advances in Applied Mechanics,Vo1.9,Academic Press, New York,1968:313~377.
[16] Taylor G. The Use of Flat-Ended Projectiles for Determining Dynamic Yield Stress I. Theoretical Considerations[J]. Proceedings of the Royal Society of London, 1948, 194(1038):289-299.
[17] Segletes S B. The erosion transition of tungsten-alloy long rods into aluminum targets[J]. International Journal of Solids & Structures, 2007, 44(7–8):2168-2191.
[18] Bishop R F, Hill R, Mott N F. The theory of indentation and hardness tests. Proceedings of the Physical Society of London . 1945.
[19] Luck V K, Forrestal M J, Amos DE. Dynamics spherical cavity expansion of strain-hardening materials[J].Journal of Applied Mechanics-Transactions of the ASME . 1991.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}