考虑轴向张力时变效应的圆柱体涡激振动响应特性研究

袁昱超1,2, 薛鸿祥1,2, 唐文勇1,2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (9) : 80-87.

PDF(4028 KB)
PDF(4028 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (9) : 80-87.
论文

考虑轴向张力时变效应的圆柱体涡激振动响应特性研究

  • 袁昱超1,2, 薛鸿祥1,2, 唐文勇1,2
作者信息 +

Response characteristics of a cylinder’s VIV considering time-varying axial tension effect

  • YUAN Yuchao1,2, XUE Hongxiang1,2, TANG Wenyong1,2
Author information +
文章历史 +

摘要

借助时域流体力分解模型,本文开展时变轴向张力与涡激振动联合激励下圆柱体动力响应特性研究。采用某2.552m小尺度立管模型试验结果验证本文方法在顶张力恒定和时变条件下预报结构响应的有效性。针对另一尺度较大的38m圆柱体模型,设计28个张力时变工况以研究时变张力幅值和频率对涡激振动响应的影响规律。张力时变工况中,结构动力响应呈现振幅调制、滞后、频率转换及多频响应叠加、模态阶跃等不同于张力恒定工况的新特征。当 时,结构会发生强烈的Mathieu型共振。

Abstract

With the help of time domain force-decomposition model, cylinders’ dynamic response characteristics under combined excitation of time-varying axial tension and vortex-induced vibration (VIV) are investigated in this paper. The test results of a small-scale (2.552m) riser model are utilized to validate the adopted approach under constant and time-varying top-end tension situations. For another relatively long (38m) cylinder model, 28 cases with time-varying tension are designed to investigate the influence laws of varying tension amplitude and frequency on VIV response for cylinders. The structural response with time-varying tension presents some different features, i.e. amplitude modulation, hysteresis, frequency transition, multi-frequencies response superposition and mode jump, from those under constant tension situation. When , Mathieu-type resonance will be excited significantly.
 

关键词

时变张力 / 涡激振动 / 响应特性 / 时域

Key words

Time-varying tension / Vortex-Induced Vibration / Response characteristics / Time domain

引用本文

导出引用
袁昱超1,2, 薛鸿祥1,2, 唐文勇1,2. 考虑轴向张力时变效应的圆柱体涡激振动响应特性研究[J]. 振动与冲击, 2019, 38(9): 80-87
YUAN Yuchao1,2, XUE Hongxiang1,2, TANG Wenyong1,2. Response characteristics of a cylinder’s VIV considering time-varying axial tension effect[J]. Journal of Vibration and Shock, 2019, 38(9): 80-87

参考文献

[1] Franzini G.R., Pesce C.P., Gonçalves R.T., Fujarra A.L.C., Pereira A.A.P., Concomitant vortex-induced vibration experiments: a cantilevered flexible cylinder and a rigid cylinder mounted on a leaf-spring apparatus[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2014, 36(3):547-558.
[2] Franzini G.R., Pesce C.P., Gonçalves R.T., Mendes P., Fujarra A.L.C., Experimental investigations on Vortex-Induced Vibrations with a long flexible cylinder. Part II: effect of axial motion excitation in a vertical configuration[C]. Proceedings of the 11th International Conference on Flow-Induced Vibration, The Hague, The Netherlands, 2016.
[3] Karniadakis G.E., Sherwin S.J., Spectral/hp Element Methods for Computational Fluid Dynamics[M]. Oxford University Press, New York, USA, 2005.
[4] Josefsson P.M., Dalton C., Vortex-Induced Vibration of a Variable Tension Riser[C]. Proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering, San Diego, California, USA, 2007,paper No.OMAE2007-29200.
[5] Park H.I., Jung D.H., A finite element method for dynamic analysis of long slender marine structures under combined parametric and forcing excitations[J]. Ocean Engineering, 2002, 29(11):1313-1325.
[6] da Silveira L.M.Y., Martins C.d.A., Leandro D.C., Pesce C.P., An investigation on the effect of tension variation on VIV of risers[C]. Proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering. San Diego, California, USA. 2007, OMAE2007-29247.
[7] 王东耀, 凌国灿. 在平台振荡条件下TLP张力腿的涡激非线性响应[J]. 海洋学报, 1998, 20(3):119-128.
Wang D.Y., Ling G.C., Vortex-induced nonlinear vibration of TLP tethers under circumstances of platform oscillation[J]. Acta Oceanologica Sinica, 1998, 20(3): 119-128.
[8] Wu X.M., Huang W.P., Study on analysis method for deepwater TTR coupled vibration of parameter vibration and vortex-induced vibration[J]. Journal of Vibroengineering, 2012, 24(3): 977-983
[9] Chen W.M., Li M., Guo S.X., Gan K., Dynamic analysis of coupling between floating top-end heave and riser's vortex-induced vibration by using finite element simulations[J]. Applied Ocean Research, 2014, 48:1-9.
[10] 唐友刚, 邵卫东, 张杰, 王丽元, 桂龙. 深海顶张力立管参激-涡激耦合振动响应分析[J]. 工程力学, 2013, 30(5): 282-286.
Tang Y.G., Shao W.D., Zhang J., Wang L.Y., Gui L., Dynamic response analysis for coupled parametric vibration and vortex-induced vibration of top-tensioned riser in deep-sea[J]. Engineering Mechanics, 2013, 30(5): 282-286.
[11] Finn L., Lambrakos K., Maher J., Time domain prediction of riser VIV[C]. Proceedings of the 4th International Conference on Advances in Riser Technologies, Aberdeen, UK, 1999.
[12] Wang K.P., Xue H.X., Tang W.Y., 2013. Time domain analysis approach for riser Vortex-Induced Vibration based on forced vibration test data [C]. Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering, Nantes, France, paper No.OMAE2013-10285.
[13] Xue H.X., Wang K.P., Tang W.Y., A practical approach to predicting cross-flow and in-line VIV response for deepwater risers[J]. Applied Ocean Research, 2015, 52: 92-101.
[14] Thorsen M.J., Sævik S., Larsen C.M., Time domain simulation of vortex-induced vibrations in stationary and oscillating flows[J]. Journal of Fluids and Structures, 2016, 61:1-19.
[15] Gopalkrishnan R., Vortex induced forces on oscillating bluff cylinders[D]. Doctoral thesis, Massachusetts Institute of Technology, 1993.
[16] Venugopal M., Damping and response of a flexible cylinder in a current[D]. Doctoral thesis, Massachusetts Institute of Technology, 1996.
[17] Franzini G.R., Pesce C.P., Salles R., Gonçalves R.T., Fujarra A.L.C., Mendes P., Experimental Analysis of a Vertical and Flexible Cylinder in Water: Response to Top Motion Excitation and Parametric Resonance[J]. Journal of Vibration and Acoustics, 2015, 137(3)/031010-1:12.
[18] Trim A.D., Braaten H., Experimental investigation of vortex-induced vibration of long marine risers[J]. Journal of Fluids and Structures, 2005, 21:335-361.

PDF(4028 KB)

Accesses

Citation

Detail

段落导航
相关文章

/