大跨连续刚构桥双肢薄壁墩抗震性能研究

陈爱军,彭容新,王解军,贺国京

振动与冲击 ›› 2020, Vol. 39 ›› Issue (1) : 1-7.

PDF(1379 KB)
PDF(1379 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (1) : 1-7.
论文

大跨连续刚构桥双肢薄壁墩抗震性能研究

  • 陈爱军,彭容新,王解军,贺国京
作者信息 +

Aseismic performance of double-limb thin-walled piers of a large-span continuous rigid frame bridge

  • CHEN Aijun, PENG Rongxin, WANG Jiejun, HE Guojing
Author information +
文章历史 +

摘要

为获得双肢薄壁墩在地震作用下的破坏形态与力学性能,采用低周反复荷载试验探讨了不同轴压比、主筋率及体积配箍率对该类型桥墩抗震性能的影响,得到了各试验墩的破坏特性、滞回曲线、位移延性与耗能性能。试验结果表明: 各试验墩的破坏形态基本相似,大体可分为三个阶段:弹性阶段、弹塑性阶段、弯曲破坏阶段。试验墩在墩底及系梁处破坏严重,其中墩底与墩顶出现显著的弯曲破坏,系梁处出现“X形”裂缝。主筋率较高的双肢薄壁墩滞回曲线较为饱满,耗能性能良好,适当提高轴压比可显著提高该桥墩的延性性能。各试验墩的变形能力较好,位移延性在2.63~3.68,变化幅度较大,主筋率对延性影响显著。

Abstract

In order to obtain failure form and mechanical performance of double-limb thin-walled piers under action of earthquake, effects of axial compression ratio, main reinforcement ratio and volume stirrup ratio on aseismic performance of this kind of piers were investigated with low cycle repeated load tests to obtain failure characteristics, hysteretic curves, displacement ductility and energy dissipation performance of all tested piers. The test results showed that failure modes of all tested piers are basically similar and they can be divided into three stages including elastic stage, elastic-plastic one and bending failure one; tested piers are seriously damaged at their bottoms and places connected with beams, significant bending failures appear at pier bottoms and tops; “X” shape cracks appear at places tied with beams; hysteretic curves of piers with higher main reinforcement ratio are fuller and their energy dissipation performance is good; proper increase in axial compression ratio can significantly improve ductility performance of tested piers; the deformation ability of each tested pier is better, displacement ductility of tested piers is within the range of 2.63-3.68 and has larger variation amplitude, main reinforcement ratio significantly affects ductility.

关键词

抗震性能 / 双肢薄壁墩 / 低周反复荷载试验 / 延性性能 / 轴压比

Key words

aseismic performance / double-limb thin-walled pier / low cycle repeated load test / ductility performance / axial compression ratio

引用本文

导出引用
陈爱军,彭容新,王解军,贺国京. 大跨连续刚构桥双肢薄壁墩抗震性能研究[J]. 振动与冲击, 2020, 39(1): 1-7
CHEN Aijun, PENG Rongxin, WANG Jiejun, HE Guojing. Aseismic performance of double-limb thin-walled piers of a large-span continuous rigid frame bridge[J]. Journal of Vibration and Shock, 2020, 39(1): 1-7

参考文献

[1] 宗周红,夏坚,徐绰然. 桥梁高墩抗震研究现状及展望[J]. 东南大学学报(自然科学版),2013,43(02): 445-452.
ZONG Zhou-hong, XIA Jian, XU Chao-ran. Seismic Study of High Piers of Large-Span Bridges: an Overview and Research Development [J]. Journal of Southeast University (Natural Science Edition),2013,43(02): 445-452. (in Chinese)
[2] 闫晓宇,李忠献,韩强,杜修力.多点激励下大跨度连续刚构桥地震响应振动台阵试验研究[J].土木工程学报,2013,46(07):81-89.
YAN Xiao-yu, LI Zhong-xian, DU Xiu-li. Shaking tables test study on seismic responses of a long-span rigid-framed bridge under multi-support excitations[J]. china civil engineering journal,2013,46(07):81-89. (in Chinese)
[3] 李建中,管仲国. 基于性能桥梁抗震设计理论发展[J]. 工程力学, 2011,28(S2):24-30,53.
LI Jian-zhong, GUAN Zhong-guo. Performance- -based seismic design for bridges [J]. Engineering Mechanics,2011,28(S2):24-30,53. (in Chinese)
[4] 艾庆华,王东升,李宏男,等. 基于塑性铰模型的钢筋混凝土桥墩地震损伤评价[J].工程力学, 2009,26(4):158-166.
AI Qing-hua, WANG Dong-sheng, LI Hong-nan,et al.Seismic damage evaluation of RC bridge columns based on plastic hinge model[J]. Engineering Mechanics,2009, 26(4): 158-166. (in Chinese)
[5] 孙治国,王东升,郭迅,等. 钢筋混凝土墩柱等效塑性铰长度研究[J]. 中国公路学报,2011,24 (5):56-64.
SUN Zhi-guo, WANG Dong-sheng, GUO Xun, et al.  Research on equivalent plastic hinge length of reinforced concrete bridge column[J]. China Journal of Highway and Transport, 2011,24 (5):56-64. (in Chinese)
[6]何钦象,田小红,宋丹.高墩大跨径连续刚构桥抗震性能评估[J].振动与冲击,2009,28(01):68-71+196.
HE Qin-xiang, TIAN Xiao-hong, SONG Dan. Seismic performance evaluation of long span continuous rigid frame bridge with high piers [J]. Journal of Vibration and Shock, 2009, 28(01): 68-71+196.
[7]程麦理,李青宁,尹俊红,孙建鹏,周春娟.非规则高墩曲线桥梁振动台试验研究[J].振动与冲击,2016,35(02):24-30.
CHENG Mai-li,LI Qing-ning, YIN Jun-hong, et al. Shaking tables tests of irregular curved bridge with high piers[J]. Journal of Vibration and Shock,2016,35(02):24-30.
[8]陈洋洋,崔杰,刘博,周福霖.高墩梁桥的水平向主导振型理论分析[J].振动与冲击,2016,35(12):13-21.
CHEN Yang-yang, CUI Jie, LIU Bo, et al. A theoretical study on the horizontal dominant vibration mode of a girder bridge with tall piers [J]. Journal of Vibration and Shock, 2016,35(12): 13-21.
[9] 王成博,史志利,李忠献. 随机地震动场多点激励下大跨度连续刚构桥的地震反应分析[J].地震工程与工程振动,2003,23(6):57-62.
WANG Cheng-bo, SHI Zhi-li, LI Zhong-xian. Seismic response analysis for long-span continuous rigid framed bridges under multi-support excitations of random earthquake ground motions[J].Earthquake Engineering and Engineering Vibration,2003,23 (6):57-62. (in Chinese)
[10] 陈旭,李建中,刘笑显.墩身高阶振型对高墩地震反应影响[J].同济大学学报(自然科学版),2017,45 (02):159-166.
CHEN Xu, LI Jian-zhong, LIU Xiao-xian. Seismic Performance of Tall Piers Influenced by Higher - mode Effects of Piers[J]. Journal Of Tongji University ( Natural Science),2017,45 (02):159-166. (in Chinese)
[11] 卢皓,管仲国,李建中.高阶振型对高墩桥梁抗震性能的影响及其识别[J].振动与冲击,2012,31(17): 81-85+98.
LU Hao, GUAN Zhong-guo, LI Jian-zhong. Effect of Higher Modal Shapes on Aseismic Performance  of a Bridge with High Piers and its Identification[J]. Journal of Vibration and Shock,2012,31(17): 81-85+98. (in Chinese)
[12] 夏修身,陈兴冲.铁路高墩桥梁基底摇摆隔震与墩顶减震对比研究[J].铁道学报,2011,33(09): 102-107.
XIA Xiu-shen, CHEN Xing-chong . Controlled Rocking and Pier Top Seismic Isolation of Railway  Bridge with Tall Piers[J]. Journal of the China Railway Society,2011,33(09): 102-107. (in Chinese)
[13] 杨俊杰. 相似理论与结构模型试验[M]. 武汉:武汉理工大学出版社, 2005.
YANG Jun-jie. Similarity Theory and Structural Model Test[M].Wuhan: Wuhan University of Technology Press, 2005. (in Chinese)
[14] 蒋丽忠,邵光强,王辉,等.高速铁路圆端形空心桥墩抗震性能试验研究[J].工程力学,2014,31(03):72-82.
JIANG Li-zhong, SHAO Guang-qiang, WANG Hui, et al. Experimental study on seismic performance of hollow  piers with rounded rectangular cross section in  high-speed railways [J]. Engineering Mechanics,2014,31(03):72-82. (in Chinese)
[15] 中华人民共和国交通运输部. JTG/T B02-01—2008公路桥梁抗震设计细则[S]. 北京:人民交通出版社, 2008.
Ministry of Transport of the People's Republic of China. JTG/T B02-01—2008 Guidelines for Seismic Design of Highway Bridges [S].Beijing: China Communications Press, 2008. (in Chinese)
[16] 蒋丽忠,邵光强,姜静静,等.高速铁路圆端形实体桥墩抗震性能试验研究[J].土木工程学报,2013,46(03):86-95.
JIANG Li-zhong, SHAO Guang-qiang, JIANG Jing-jing, et al. Experimental study on seismic performance of solid piers with round ended cross-section in high-speed railway [J]. China Civil Engineering Journal ,2013,46(03):86-95. (in Chinese)
[17] ACI 374.2R-13. Guide for Testing Reinforced Concrete Structural Elements Under Slowly Applied Simulated Seismic Loads. ACI Committee 374; 2013.
[18] Park R. Evaluation of Ductility of Structures and Structural Assemblages from Laboratory Testing[J]. Bulletin of the New Zealand National Society for Earthquake Engineering, 1989, 22(3): 155-166.
[19] FEMA 273. NEHRP commentary on the guidelines for the rehabilitation of buildings[R]. Washington DC: Federal Emergency Management Agency,1997.
[20] JGJ 101—1996建筑抗震试验方法规程[S].北京:中国建筑工业出版社,1997.
Specification for Seismic Test Methods for JGJ 101-1996 Buildings [S]. Beijing: China Building Industry Press, 1997
[21] Bayrak O, Sheikh S A. High-strength Concrete Column Sunder Simulated Earthquake Loading [J]. ACI Structural Journal, 1997,94(6):708―722.

PDF(1379 KB)

Accesses

Citation

Detail

段落导航
相关文章

/