柔性薄壁轴承是一种特殊的轴承,工作时其内、外圈都受力变形为椭圆,这导致正常柔性薄壁轴承的振动信号存在周期性冲击,这种冲击背景使柔性薄壁轴承的故障特征提取更为困难。谱峭度方法是利用峭度对信号中的瞬态成分敏感这一特性,根据峭度值最大原则来准确提取共振带,克服了传统共振解调技术存在带通滤波器参数需要人工预先确定的缺陷。对自适应谱峭度,基于滤波器组的快速谱峭度以及基于短时傅里叶变换的快速谱峭度进行了对比分析,利用它们提取柔性薄壁轴承内、外圈故障特征频率,对这三种方法的特征提取效果进行了比较,结果表明自适应谱峭度方法更适合于提取柔性薄壁轴承的故障特征频率。
Abstract
Flexible thin-walled bearing is a special type of bearing, and when working, its inner and outer rings are deformed to oval to cause there is periodic impact in its vibration signals. This impact background makes it more difficult to extract its fault features. The spectral kurtosis method uses a kurtosis characteristic of it being sensitive to transient components of signals. The resonance band is extracted accurately according to the principle of kurtosis being the maximum to overcome the defect of traditional resonance demodulation technology requiring manual pre-determination of band-pass filter parameters. Here, adaptive spectral kurtosis, fast kurtosis based on filter set and fast kurtosis based on short time Fourier transformation were analyzed contrastively, then they were used to extract fault feature frequency of inner and outer rings of a flexible thin-walled bearing, respectively. The feature extraction effects of these 3 methods were compared. The results showed that the adaptive spectral kurtosis method is more suitable for extracting fault feature frequency of flexible thin-walled bearings.
关键词
柔性薄壁轴承 /
谱峭度 /
特征提取
{{custom_keyword}} /
Key words
flexible thin-walled bearing /
spectral kurtosis /
feature extraction
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Ostapski W. Analysis of the stress state in the harmonic drive generator-flexspline system in relation to selected structural parameters and manufacturing deviations[J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 2010, 58(4):683-698.
[2] 姜祎,王亚珍,赵坤,等. 谐波减速器柔性薄壁轴承的力学特性分析[J]. 轴承,2017(01):10-14.
Jiang Yi, Wang Yazhen, Zhao Kun et al. Mechanical Property Analysis of Flexible Thin Bearing in Harmonic Drive[J]. Bearing, 2017(01):10-14.
[3] 张栋梁,刘飞. 基于有限元的谐波齿轮传动柔性轴承动态和接触特性分析[J]. 机械传动,2015,39(05):50-53+69.
Zhang Dongliang, Liu Fei. Dynamic and Contact Characteristic Analysis of Flexible Bearing of Harmonic Gear Drive based on Finite Element[J]. Journal of Mechanical Transmission, 2015,39(05):50-53+69.
[4] 王亚珍,赵坤,姜祎,等. 预应力对柔性薄壁轴承疲劳寿命的影响[J]. 润滑与密封,2017,42(03):54-58+123.
WANG Yazhen, ZHAO Kun, JIANG Yi, et al. Influence of Prestress on Fatigue Life of Flexible Thin Wall Bearings[J]. Lubrication Engineering, 2015,39(05):50-53+69.
[5] Harting D R. Demodulated resonance analysis - A powerful incipient failure detection technique[J]. Isa Transactions, 1978, 17(1):35-40.
[6] 侯亚芬. 基于共振解调法的CRH滚动轴承故障研究[D]. 兰州交通大学,2017.
[7] Dwyer R F. Fourth‐order spectra of Gaussian amplitude‐modulated sinusoids[J]. Journal of the Acoustical Society of America, 1991, 90(2):918-926.
[8] Antoni J. Fast computation of the kurtogram for the detection of transient faults[J]. Mechanical Systems & Signal Processing, 2007, 21(1):108-124.
[9] 王晓冬,何正嘉,訾艳阳. 多小波自适应构造方法及滚动轴承复合故障诊断研究[J]. 振动工程学报,2010,23(04):438-444.
WANG Xiao-dong, HE Zheng-jia, ZI Yan –yang. Adaptive construction of multiwavelet and research on composite fault diagnosis of rolling bearing[J]. Journal of Vibration Engineering, 2010,23(04):438-444.
[10] 李辉,郑海起,唐力伟. 基于双树复小波包峭度图的轴承故障诊断研究[J]. 振动与冲击,2012,31(10):13-18.
LI Hui, ZHENG Hai-qi, TANG Li-wei. Bearing fault diagnosis based on kurtogram of dual-tree complex wavelet packet transform[J]. Journal of Vibration and Shock, 2012,31(10):13-18.
[11] Antoni J. The spectral kurtosis: a useful tool for characterising non-stationary signals[J]. Mechanical Systems & Signal Processing, 2006, 20(2):282-307.
[12] Wang Y, Liang M. An adaptive SK technique and its application for fault detection of rolling element bearings[J]. Mechanical Systems & Signal Processing, 2011, 25(5):1750-1764.
[13] Antoni J, Randall R B. The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines[J]. Mechanical Systems & Signal Processing, 2006, 20(2):308-331.
[14] 王宏超,陈进,董广明,等. 基于快速kurtogram算法的共振解调方法在滚动轴承故障特征提取中的应用[J].振动与冲击,2013,32(01):35-37+48.
WANG Hong-chao, CHEN Jin, DONG Guang-ming. Application of resonance demodulation in rolling bearing fault feature extraction based on fast computation of kurtogram[J]. Journal of Vibration and Shock, 2013,32(01):35-37+48.
[15] 赵凤展,杨仁刚. 基于短时傅里叶变换的电压暂降扰动检测[J].中国电机工程学报,2007,27(10):28-34+109.
ZHAO Feng-zhan, YANG Ren-gang. Voltage Sag Disturbance Detection Based on Short Time Fourier Transform[J]. Proceedings of the CSEE, 2007,27(10):28-34+109.
[16] 林武文,李振,王娇娇,等. 薄壁轴承性能测试平台设计与实现[J].润滑与密封,2017,42(11):100-105.
LIN Wuwen, LI Zhen, WANG Jiaojiao, et al. Design and Implementation of Performance Testing Rig for Thin-wall Bearing[J].
Lubrication Engineering, 2017, 42(11): 100-105.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}