基于VMD的建筑结构模态参数识别

孙猛猛1,郅伦海2,3

振动与冲击 ›› 2020, Vol. 39 ›› Issue (1) : 175-183.

PDF(2742 KB)
PDF(2742 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (1) : 175-183.
论文

基于VMD的建筑结构模态参数识别

  • 孙猛猛1,郅伦海2,3
作者信息 +

Modal parametric identification of building structures based on VMD

  • SUN Mengmeng1,ZHI Lunhai2,3
Author information +
文章历史 +

摘要

在建筑结构的健康监测、控制和状态评估中经常遇到的一个关键性问题是如何根据实测响应信号准确估计结构阻尼比及自振频率等模态参数。基于变分模态分解(VMD)提出一种新的结构模态参数识别方法。该方法首先对实测振动信号进行VMD分解,获得单模态信号,然后采用自然环境激励技术(NEXT)得到单模态信号的自由衰减响应,最后利用直接插值法(DI)和曲线拟合获得结构的自振频率和阻尼比。通过三层框架结构的数值模拟验证了该方法的准确性及可靠性。利用该技术对台风“达维”作用下广州中信广场的实测加速度数据进行分析,并将估计的结构模态参数和其他识别方法的分析结果进行对比,进一步验证了该方法的准确性和有效性。

Abstract

A key issue in health monitoring, control and condition assessment of building structures is correctly estimating their modal parameters including structural damping ratios, natural frequencies, etc. based on measured response signals. Here, a new structural modal parametric identification approach was proposed based on variational mode decomposition (VMD).With the proposed method, a measured vibration signal was decomposed using VMD to obtain various modal signals. Then, free decay response of each mode was obtained using NEXT technique. Finally, the direct interpolation (DI) method and the curve fitting one were used to estimate various modes’ natural frequencies and damping ratios. The numerical simulation for a 3-story frame structure was employed to verify the correctness and reliability of the proposed method. The measured acceleration response data of CITIC Plaza in Guangzhou under Typhoon Damrey were analyzed using the proposed approach. The estimated structural modal parameters were compared with those obtained using other recognition methods to further verify the correctness and reliability of the proposed method.

关键词

模态参数识别 / 变分模态分解 / 直接插值法 / 阻尼比 / 自振频率 / 建筑结构

Key words

modal parameter identification / variational mode decomposition (VMD) / direct interpolation / damping ratio / natural frequencies / building structure

引用本文

导出引用
孙猛猛1,郅伦海2,3. 基于VMD的建筑结构模态参数识别[J]. 振动与冲击, 2020, 39(1): 175-183
SUN Mengmeng1,ZHI Lunhai2,3. Modal parametric identification of building structures based on VMD[J]. Journal of Vibration and Shock, 2020, 39(1): 175-183

参考文献

[1] 汤宝平, 何启源, 蒋恒恒,等. 利用小波去噪和HHT的模态参数识别[J]. 振动、测试与诊断, 2009, 29(2):197-200.
Tang B, He Q, Jiang H, et al. Modal parameter identification based on hilbert huang transform and wavelet de-noising[J]. Journal of Vibration Measurement & Diagnosis, 2009, 29(2):197-200.
[2] 李秋胜, 韩旭亮, 何运成,等. 环境风激励下的深圳平安金融中心模态参数识别[J]. 建筑科学与工程学报, 2017, 34(3):1-8.
Qiu-Sheng L I, Han X L, Yun-Cheng H E, et al. Modal Parameter Identification of Ping'an Financial Center in Shenzhen Under Ambient Wind Excitation[J]. Journal of Architecture & Civil Engineering, 2017, 34(3):1-8.
[3] 陈隽, 徐幼麟. HHT方法在结构模态参数识别中的应用[J]. 振动工程学报, 2003, 16(3):383-388.
Chen J, Xu Y. Application of HHT for Modal Parameter Identification to Civil Structures[J]. Journal of Vibration Engineering, 2003, 16(3):383-388.
[4] 杨望灿, 张培林, 王怀光,等. 基于 EEMD 的多尺度模糊熵的齿轮故障诊断[J]. 振动与冲击, 2015, 34(14):163-167.
Yang W C, Zhang P L, Wang H G, et al. Gear fault diagnosis based on multiscale fuzzy entropy of EEMD[J]. Journal of Vibration & Shock, 2015, 34(14):163-167 .
[5] Dragomiretskiy K, Zosso D. Variational Mode Decomposition [J]. IEEE Transactions on Signal Processing, 2014, 62(3):531-544.
[6] 刘尚坤, 唐贵基. 改进的VMD方法及其在转子故障诊断中的应用[J]. 动力工程学报, 2016, 36(6):448-453.
Liu S, Tang G, Energy S O. Application of Improved VMD Method in Fault Diagnosis of Rotor Systems[J]. Journal of Chinese Society of Power Engineering, 2016, 36(6):448-453.
[7] 刘长良, 闫萧. 基于工况辨识和变分模态分解的风电机组滚动轴承故障诊断[J]. 动力工程学报, 2017, 37(4):273-278.
Liu C, Yan X, Liu C, et al. Fault Diagnosis of a Wind Turbine Rolling Bearing Based on Variational Mode Decomposition and Condition Identification[J]. Dongli Gongcheng Xuebao/journal of Chinese Society of Power Engineering, 2017, 37(4):273-278.
[8] 石敏, 李影, 王冰,等. 基于变分模态分解的齿轮箱故障诊断[J]. 电力科学与工程, 2016, 32(1):23-26.
Shi M, Ying L I, Wang B, et al. Gearbox Fault Diagnosis Based on Variational Mode Decomposition[J]. Electric Power Science & Engineering, 2016, 32(1):23-26.
[9] Han J, Zheng P, Wang H. Structural modal parameter identifi cation and damage diagnosis based on Hilbert-Huang transform[J]. Earthquake Engineering and Engineering Vibration, 2014, 13(1):101-111.
[10] 谯雯, 罗佩, 刘国明. 基于自然激励技术和HHT变换的重力坝模态分析[J]. 水利学报, 2014, 45(8):958-966.
Qiao W, Luo P, Liu G M. Modal parameter identification of gravity dam based on natural excitation technique and Hilbert-Huang transform[J]. Journal of Hydraulic Engineering, 2014, 45(8):958-966.
[11] JINLIANG WANG, ZONGJUN LI. EXTREME-POINT SYMMETRIC MODE DECOMPOSITION METHOD FOR DATA ANALYSIS[J]. Advances in Adaptive Data Analysis, 2013, 05(3):1137-1137.
[12] 郅伦海. 城市中心边界层风特性及超高层建筑动力响应研究[D]. 湖南大学, 2011.
ZHI Lunhai. Research on Boundary Layer Wind Characteristics over Urban Area and Dynamic Responses of Tall Buildings[D]. Changsha: Hunan University,2011.
[13] 李正农, 宋克, 李秋胜,等. 广州中信广场台风特性与结构响应的相关性分析[J]. 实验流体力学, 2009, 23(4):21-27.
Zheng-Nong L I, Ke S, Qiu-Sheng L I, et al. Correlation analysis of wind characteristic and wind-induced response of CITIC Plaza[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(4):21-27.
[14] Amezquita-Sanchez J P, Park H S, Adeli H.A novel methodology for modal parameters identification of large smart structures using MUSIC, empirical wavelet transform, and Hilbert transform[J]. Engineering Structures, 2017, 147:148-159.
[15] Amezquita-Sanchez J P, Adeli H. A new music-empirical wavelet transform methodology for time–frequency analysis of noisy nonlinear and non-stationary signals [J]. Digital Signal Processing, 2015, 45(C):55-68.
[16] Hu Y, Li F, Li H, et al. An enhanced empirical wavelet transform for noisy and non-stationary signal processing [J].Digital Signal Processing, 2017, 60:220

PDF(2742 KB)

Accesses

Citation

Detail

段落导航
相关文章

/