汽车车身空腔阻隔结构降噪试验研究

张立军1,2,汪子燚1,2,孟德建1,2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (1) : 232-239.

PDF(2322 KB)
PDF(2322 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (1) : 232-239.
论文

汽车车身空腔阻隔结构降噪试验研究

  • 张立军1,2,汪子燚1,2,孟德建1,2
作者信息 +

Tests for noise reduction of car body cavity barrier structure

  • ZHANG Lijun1,2,WANG Ziyi1,2, MENG Dejian1,2
Author information +
文章历史 +

摘要

系统性地建立了阻隔结构降噪试验研究方法。建立面向白车身的阻隔结构降噪性能测量方法,通过对比阻隔结构拆除前后白车身模态与传递函数的变化情况,分析其对于车身低频噪声的抑制能力;建立面向整车的阻隔结构降噪性能转鼓试验方法,用以评估其对于发动机噪声、轮胎路面噪声的抑制能力;建立面向整车的阻隔结构降噪性能风洞试验方法,用以评估其对于气动噪声的抑制能力。试验结果表明,阻隔结构降低车内噪声主要有两个方面:一方面,空腔阻隔结构增强了车身的模态阻尼,抑制车身的振动,从而降低了车内低频噪声;另一方面,阻隔结构切断了车外噪声经过车身侧围空腔入侵乘员舱的传播途径,从而降低了车内高频噪声。

Abstract

The test study methods were systematically established for noise reduction of car body cavity barrier structure. Variations of body-in-white modal features and transfer function with and without barrier structure were measured to analyze barrier structure’s suppression ability against car body low-frequency noise. The drum test method for noise reduction performance of the whole vehicle barrier structure was built to estimate barrier structure’s suppression ability against engine noise and tire/road surface noise. The wind tunnel test method for noise reduction performance of the whole vehicle barrier structure was built to estimate barrier structure’s suppression ability against aerodynamic noise. The test results showed that cavity barrier structure reducing interior noise has two aspects; on one hand, cavity barrier structure enhances car body’s modal damping to suppress car body’s vibration and reduce interior low-frequency noise; on the other hand, barrier structure cuts off the propagation path of noise from outside of vehicle through car body’s side cavity to invade passenger compartment so as to reduce interior high-frequency noise.

关键词

车身空腔 / 阻隔结构 / 降噪 / 试验研究 / 车内噪声

Key words

car body cavity / barrier structure / noise reduction / test / interior noise

引用本文

导出引用
张立军1,2,汪子燚1,2,孟德建1,2. 汽车车身空腔阻隔结构降噪试验研究[J]. 振动与冲击, 2020, 39(1): 232-239
ZHANG Lijun1,2,WANG Ziyi1,2, MENG Dejian1,2. Tests for noise reduction of car body cavity barrier structure[J]. Journal of Vibration and Shock, 2020, 39(1): 232-239

参考文献

[1]   杜功焕,朱哲民,龚秀芬. 声学基础[M]. 南京:南京大学出版社,2001.
Du Gonghuan, Zhu Zhemin, Gong Xiufen. Acoustic Foundation[M]. Nanjing: Nanjing University Press, 2001.
[2]   FÉLIX S, PAGNEUX V. Sound propagation in rigid bends: A multimodal approach[J]. The Journal of the Acoustical Society of America, 2001, 110(1):1329-37.
[3]   顾圣士,方光熊. 长波在弯曲管道中的传播——Ⅰ变截面弯管中长波传播的基本分析[J]. 应用数学和力学, 1983, 4(1):77-88.
Gu Sheng-shi, Fang Guang-xiong. Propagation of a Long Wave in a Curved Duct(I) Basic Analysis of Long Wave Propagation in a Curved Duct with Variable Cross Section[J]. Applied Mathematics and Mechanics, 1983,4(1):77-88.
[4]   PERREY-DEBAIN E, MARÉCHAL R, VILLE J M. Side-branch resonators modelling with Green׳s function methods[J]. Journal of Sound & Vibration, 2014, 333(19):4458-4472.
[5]   戴根华,田瑞,李鹭,等. 带旁通的管道中的声能流及传声损失Ⅰ:理论分析[J]. 声学学报, 1995(4):244-249.
Dai Genhua, TIAN Rui, Li Lu, et al. Acoustic energy flux and transmission loss in a duct with a by-pass, part I: theoretical analysis[J]. ACTA ACUSTICA, 1995(4):244-249
[6]   田瑞,戴根华,王清理,等. 带旁通的管道中的声能流及传声损失Ⅱ:实验研究[J]. 声学学报, 1995(05):385-392.
Dai Genhua, TIAN Rui, WANG Qingli, et al. Acoustic energy flux and transmission loss in a duct with a by-pass, part II: experimental study[J]. ACTA ACUSTICA, 1995(05):385-392.
[7]   TONON D, GÜNES NAKIBOGLU, WILLEMS J, et al. Self-Sustained Aeroacoustic Oscillations in Multiple Side Branch Pipe Systems[C]// Aiaa/ceas Aeroacoustics Conference. 2009.
[8]   张立军,宋然,孟德建.车身侧围空腔阻隔结构对低频结构噪声影响的仿真分析[J].汽车技术,2016(12):25-30.
Zhang Lijun, Song Ran, Meng Dejian. Simulation Analysis on the Effect of Cavity Filler Block in Car Body Sidewall on Low-Frequency Structure-Borne Noise[J]. Automobile Technology, 2016(12):25-30.
[9]   牛胜福,张立军,孟德建,等.车身侧围空腔阻隔结构隔声性能的建模与验证[J].汽车工程,2016,38(07):883-888.
Niu Shengfu,Zhang Lijun,Meng Dejian, et al. Modeling and Verification of the Sound Barrier Performance of Cavity Filler Structure in Car Body Side Panel[J]. Automobile engineering, 2016,38(07):883-888.
[10]   齐海东,张俊华,曹莹. 空腔密封产品在汽车车身中的应用[J]. 粘接, 2013,34(09):42-46.
Qi Hai-dong, Zhang Jun-hua, Cao Ying. Application of cavity sealing assembly in automobile body[J]. ADHESION, 2013,34(9):42-46.
[11]   GUAN J, HUANG J, Analysis of Vehicle Pillar Cavity Foam Block Effect on Interior Noise Using SEA[J], SAE Technical Paper 1999-01-1701, 1999.
[12]   ALLEN M, BARPANDA D, TABAKOVIC R, et al. Improving Vehicle Stiffness and Crashworthiness Utilizing A New Syntactic Polyurethane Foam Technology[J], SAE Technical Paper 2003-01-1569, 2003.
[13]   STOTERA D, CONNELLY T, GARDNER B, et al. Testing and Simulation of Anti-Flutter Foam and High Damping Foam in a Vehicle Roof Structure[J], SAE Technical Paper 2013-01-1944, 2013.
[14]   SAE Acoustical Materials Committee. J1400_201008 Laboratory Measurement of the Airborne Sound Barrier Performance of Flat Materials and Assemblies[S]. SAE International, 2010.
[15]   SAE Acoustical Materials Committee. J2846_201005 Laboratory Measurement of the Acoustical Performance of Body Cavity Filler Materials[S]. SAE International, 2010.
[16]   B P, WAGH S, HUDSON D, Evaluation of Acoustic Performance of Expandable Foam Baffles and Correlation with Incab Noise[J], SAE Technical Paper 2011-01-1624, 2011.
[17]   SIAVOSHANI S, Evaluation of Cavity Fillers to Improve Vehicle NVH Comfort Quality[J], SAE Technical Paper 2008-01-0566, 2008.
[18]   SIAVOSHANI S, DRE NVH Contribution Analysis of Vehicle Cavity Fillers - NVH Target Setting Process[J], SAE Technical Paper 2009-01-2169, 2009.

PDF(2322 KB)

522

Accesses

0

Citation

Detail

段落导航
相关文章

/