基于广义Morse小波和EWT的移动荷载下结构时变频率识别

王超1,2,朱宏平2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (1) : 24-28.

PDF(994 KB)
PDF(994 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (1) : 24-28.
论文

基于广义Morse小波和EWT的移动荷载下结构时变频率识别

  • 王超1,2,朱宏平2
作者信息 +

Structural time-varying frequency identification under moving load based on generalized Morse wavelet and EWT

  • WANG Chao1,2, ZHU Hongping2
Author information +
文章历史 +

摘要

提出了基于广义Morse小波和经验小波变换的移动荷载作用下结构时变频率识别方法。首先介绍了经验小波变换技术和广义Morse小波特性,采用经验小波变换对结构响应信号进行分解,对分解得到的不同经验模式成分采用广义Morse小波分析,提取信号小波脊线识别结构瞬时频率。用一个数值算例验证了方法的有效性和精度。随后设计了一个移动小车通过钢板梁的模型试验,采用该方法识别其时变频率并与有限元计算结果进行对比分析,进一步验证方法的效果。

Abstract

A method based on the empirical wavelet transformation (EWT) and the generalized Morse wavelet was proposed to identify structural time-varying frequency under moving load. Firstly, EWT and the generalized Morse wavelet were introduced. Then a structural response signal was decomposed with EWT, the different empirical mode components decomposed were analyzed with the generalized Morse wavelet to extract signal wavelet ridges, and identify structural instantaneous frequency. Secondly, a numerical example was taken to verify the effectiveness and accuracy of the proposed method. Finally, a model test of a moving car passing through a steel plate beam was designed. The proposed method was adopted to recognize the structural time-varying frequency, and the identified results were compared with those calculated with the finite element method to further verify the effect of the proposed method.

关键词

经验小波变换 / 广义Morese小波 / 时变结构 / 移动荷载 / 瞬时频率

Key words

empirical wavelet transformation (EWT) / generalized Morse wavelet / time-varying structure / moving load / instantaneous frequency

引用本文

导出引用
王超1,2,朱宏平2. 基于广义Morse小波和EWT的移动荷载下结构时变频率识别[J]. 振动与冲击, 2020, 39(1): 24-28
WANG Chao1,2, ZHU Hongping2. Structural time-varying frequency identification under moving load based on generalized Morse wavelet and EWT[J]. Journal of Vibration and Shock, 2020, 39(1): 24-28

参考文献

[1]Yan, W. J., Katafygiotis, L. S.Application of transmissibility matrix and random matrix to Bayesian system identification with response measurements only[J]. Smart Material Structures, 2016, 25(10):105017.
[2] Hu, S.L.J., Bao, X., Li, H., Model order determination and noise removal for modal parameter estimation[J]. Mechanical Systems and Signal Processing, 2010, 24(6): 1605-1620.
[3] 蒲黔辉,洪彧,王高新,李晓斌. 快速特征系统实现算法用于环境激励下的结构模态参数识别[J].振动与冲击, 2018,37(6):55-60.
PU Qian-Hui, HONG Yu, WANG Gao-xin, Li Xiao-bing. Fast eigensystem realization algorithm based structural modal parameters identification for ambient tests[J]. Journal of Vibration and Shock, 2018,37(6):55-60.
[4] Huang, N.E., Shen, Z., Long, S.R., et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].  Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences, The Royal Society, 1998, 454(1971):903-995.
[5] Daubechies, I., Lu, J., Wu, H. T. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool[J]. Applied and computational harmonic analysis, 2011, 30(2): 243-261.
[6] Bao Y, Shi Z, Beck J L, et al. Identification of time-varying cable tension forces based on adaptive sparse time-frequency analysis of cable vibrations[J]. Structural Control and Health Monitoring, 2017, 24(3):1-17.
[7] Gilles J. Empirical wavelet transform[J]. IEEE transactions on signal processing, 2013, 61(16): 3999-4010.
[8] Gilles J.,Heal K.. A parameterless scale-space approach to find meaningful modes in histograms—Application to image and spectrum segmentation[J].International Journal of Wavelets, Multiresolution and Information Processing, 2014,12(6):1-17.
[9] 许鑫, 史治宇. 状态空间下基于小波变换的时变系统参数识别[J]. 振动工程学报, 2010, 23(4): 415-419.
XU Xin, SHI Zhi-yu. Parameter identification of time-varying system based on state space and wavelet transform method[J]. Journal of Vibration Engineering, 2010, 23(4): 415-419.
[10] 杨凯,于开平,白云鹤.基于信号时频分析理论识别时变模态参数实验[J].振动、测试与诊断, 2015, 35(5):880-884.
YANG Kai, YU Kai-ping, BAI Yun-he. Experimental Investigation on Estimation of Time-Varying Modal Parameters Using Time-Frequency Analysis[J]. Journal of Vibration, Measurement & Diagnosis, 2015, 35(5):880-884.
[11] Wang C., Ren W. X., Wang Z. C. et al. Instantaneous frequency identification of time-varying structures by continuous wavelet transform[J]. Engineering Structures,2013, 52(7): 17-25.
[12] Carmona R.A., Hwang W.L., Torrésani B. Characterization of signals by the ridges of their wavelet transforms[J]. IEEE transactions on signal processing, 1997, 45(10): 2586-2590.
[13] 刘景良,任伟新,王超,黄文金. 基于最大坡度法提取非平稳信号小波脊线和瞬时频率[J]. 工程力学, 2018, 35(2):30-46.
LIU Jing-liang, REN Wei-xin, WANG Chao, HUANG Wen-jin.Wavelet Ridge and Instantaneous Frequency Extraction Based on Maximum Gradient Method[J]. Engineering Mechanics, 2018, 35(2):30-46.
[14] Lilly, J.M., Olhede, S.C. Generalized Morse wavelets as a superfamily of analytic wavelets[J]. IEEE Transactions on Signal Processing, 2012, 60(11): 6036-6041.
[15] Lilly, J.M., Olhede, S.C. Higher-order properties of analytic wavelets[J]. IEEE Transactions on Signal Processing, 2009, 57(1): 146-160.

PDF(994 KB)

Accesses

Citation

Detail

段落导航
相关文章

/