为了研究球形弹簧摆对输电塔结构的风致振动控制效果,通过分段等刚度梁单元建立输电塔简化模型。给出了空间梁系结构基于Timoshenko梁理论的单元内力计算公式,并应用有限质点法对简化模型及其与球形弹簧摆的耦合系统进行风致响应分析。一方面,球形弹簧摆由于内共振性质实现非线性能量阱,从而增加振动抑制频带的宽度,提高了鲁棒性;另一方面,球形弹簧摆和结构的非线性耦合,使得顺风向的振动能量部分转移到横风向,尽管增大了横风向响应,但是降低了结构的总体响应。计算结果表明球形弹簧摆减振效果非常好,当将其安装在除塔顶外的三个位置时,位移最大值和加速度均方根减振率分别为32.5%~41.7%和35.7%~65.2%。保持质量比和安装位置不变,验证了球形弹簧摆具有较宽的设计频带。使用球形弹簧摆可以显著减小位移标准差,有利于降低结构的疲劳损伤风险。
Abstract
In order to study control effect of spherical spring pendulum on wind-induced vibration of transmission towers, a reduced model of transmission tower was established with segmental isostiffness beam elements. The element interal force calculation formula based on Timoshenko beam theory for spatial beam structrues was derived. The wind-induced responses of the reduced model and the reduced model-spherical spring pendulum coupled system were analyzed with the finite particle method, respectively. On one hand, due to internal resonance property, the spherical spring pendulum realized a nonlinear energy sink to increase the frequency band width of vibration suppression and improve the robustness. On the other hand, because of nonlinear coupling between the spherical spring pendulum and the reduced model, vibration energy in wind direction was transferred to that in transverse wind direction. Although the system response in transverse wind increased, the overall response of the system decreased. The calculation results showed that the vibration reduction effect of spherical spring pendulum is excellent; when it is installed at 3 positions except tower top, vibration reduction rates for the maxium displacement and the acceleration root mean square are in ranges of 32.5%-42.5% and 35.7%-65.2%, respectively; if keeping mass ratio and installation position unchanged, spherical spring pendulum has a wider design frequency band; using spherical spring pendulum can significantly reduce standard deviation of displacements so as to reduce fatigue damage risk of structures.
关键词
输电塔 /
球形弹簧摆 /
风致响应 /
振动控制 /
有限质点法
{{custom_keyword}} /
Key words
transmission tower /
spherical spring pendulum /
wind-induced response /
vibration control /
finite particle method
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Limongelli M P, Marinelli L and Perotti F. A Reduced Model for the Dynamic Analysis of Power Transmission Lines with Truss Supporting Towers [C]. Proceedings of the 5th International Symposium on Cable Dynamics, Santa Margherita, 15018 September 2003, 125-132.
[2] Dua A, Clobes M, Hobbel T and Matsagar V. Dynamic Analysis of Overhead Transmission Lines under Turbulent Wind Loading [J]. Open Journal of Civil Engineering, 2015, 5: 359-371.
[3] 张伟. 输电导线杆塔结构振动分析[D]. 黑龙江:哈尔滨工业大学, 2011.
Zhang Wei. Vibration Analysis of Transmission Line Tower Structure [D]. Heilongjiang: Harbin Institute of Technology, 2011. (in Chinese)
[4] 张庆华, 顾明, 黄鹏. 格构式输电塔结构多质点简化模型研究[J]. 振动与冲击, 2012, 31(5): 148-152.
Zhang Qinghua, Gu Ming, Huang Peng. Multi-degree-freedom model of a lattice transmission tower [J]. Journal of Vibration and Shock, 2012, 31(5): 148-152. (in Chinese)
[5] Ozono S, Maeda J, Makino M. Characteristics of in-plane free vibration of transmission line system [J]. Engineering Structures, 1988, 10(4): 272-280.
[6] 刘石,杨毅,田丰等. 风载荷作用下输电塔TMD及ATMD风振控制对比研究[J]. 广东电力, 2018. (录用)
Liu Shi, Yang Yi, Tian Feng, et al. Comparative study of wind vibration control over transmission tower with TMD and ATMD under wind load [J]. Guangdong Electric Power (accepted) (in Chinese)
[7] Lynch P. Resonant motions of the three-dimensional elastic pendulum [J]. International Journal of Non-Linear Mechanics, 2002, 37(2): 345-367.
[8] 贺叶飞, 楼文娟, 孙炳楠等. 悬挂质量摆对大跨越输电塔的风振控制[J]. 浙江大学学报(工学版), 2005, 39(12): 1891-1896.
He Yefei, Lou Wenjuan, Sun Bingnan, et al. Wind-induced vibration control of long span transmission tower with suspended mass pendulums [J]. Journal of Zhejiang University (Engineering Science), 2005, 39(12): 1891-1896. (in Chinese)
[9] Zhang P, Ren L, Li H, et al. Control of wind-induced vibration of transmission tower-line system by using a spring pendulum [J]. Mathematical Problems in Engineering, 2015, 2015.
[10] 张鹏, 李宏男, 田利等. 弹簧摆的内共振原理及其对输电塔的减震作用[J]. 世界地震工程, 2016, 32(1): 210-218.
Zheng Peng, Li Hongnan, Tian Li, et al. Seismic vibration control of transmission tower with a spring pendulum [J]. World Earthquake Engineering, 2016, 32(1): 210-218. (in Chinese)
[11] Ikeda T, Harata Y, Takeeda A. Nonlinear responses of spherical pendulum vibration absorbers in towerlike 2DOF structures [J]. Nonlinear Dynamics, 2017, 88(4): 2915-2932.
[12] Ting E C, Shih C, Wang Y K. Fundaments of a vector form intrinsic finite element: part 1. Basic procedure and a plane frame element [J]. Journal of Mechanics, 2004, 20(2): 113-122.
[13] Ting E C, Shih C, Wang Y K. Fundaments of a vector form intrinsic finite element: part 1. Plane solid elements [J]. Journal of Mechanics, 2004, 20(2): 123-132.
[14] 喻莹. 基于有限质点法的空间钢结构连续倒塌破坏研究[D]. 浙江杭州:浙江大学,2010.
Yu Ying. Progressive collapse of space steel structures based on the finite particle method [D]. Zhejiang: Zhejiang University, 2010. (in Chinese)
[15] 罗尧治,郑延丰,杨超,等. 结构复杂行为分析的有限质点法研究综述[J]. 工程力学, 2014, 31(8): 1-7,23.
Luo Zhiyao, Zheng Yanfeng, Yang Chao, et al. Review of the finite particle method for complex behaviors of structures [J]. Engineering Mechanics, 2014, 31(8): 1-7+23. (in Chinese)
[16] 喻莹, 王继中, 朱兴一. 基于有限质点法的双层柱面网壳强风作用下的倒塌破坏研究[J]. 东南大学学报(自然科学版), 2015, 45(4): 756-762.
Yu Ying, Wang Jizhong, Zhu Xingyi. Collapse analysis of double-layer cylindrical reticulated shell under strong wind based on finite particle method [J]. Journal of Southeast University (Natural Science Edition), 2015, 45(4): 756-762. (in Chinese)
[17] 姚旦, 沈国辉, 潘峰等. 基于向量式有限元的输电塔风致动力响应研究[J]. 工程力学, 2015, 32(11): 63-70.
Yao Dan, Shen Guohui, Pan Feng, et al. Wind-induced dynamic response of transmission tower using vector-form intrinsic finite element method [J]. Engineering Mechanics, 2015, 32(11): 63-70.(in Chinese)
[18] 孙珩. 基于有限质点法的地震作用下输电塔倒塌模拟[D]. 湖北武汉:华中科技大学, 2016.
Sun Heng. Collapse Simulation of Transmission Tower under Earthquake Action based on Finite Particle Mehtod [D]. Hubei: Huazhong University of Science and Technology, 2016. (in Chinese)
[19] Long X, Wang W, Fan J. Collapse Analysis of Transmission Tower Subjected to Earthquake Ground Motion [J]. Modelling and Simulation in Engineering, 2018, 2018.
[20] Tamura Y, Kareem A. Advanced Structural Wind Engineering [M]. Springer Japan, 2013.
[21] Davenport A G. The spectrum of horizontal gustiness near the ground in high winds [J]. Quarterly Journal of the Royal Meteorological Society, 1961, 87:194-211.
[22] Cheynet E. Simulation of spatially correlated wind velocity time-histories [DB/OL]. https:// www.mathworks.com/matlabcentral/fileexchange/50041-wind-field-simulation. 2018-6-14.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}