桥墩FRP复合材料防撞套箱蝴蝶型连接结构可靠性研究

郑植1,2,耿波2,袁佩2,尚军年2,魏思斯2,胡正涛3

振动与冲击 ›› 2020, Vol. 39 ›› Issue (1) : 281-288.

PDF(3416 KB)
PDF(3416 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (1) : 281-288.
论文

桥墩FRP复合材料防撞套箱蝴蝶型连接结构可靠性研究

  • 郑植1,2,耿波2,袁佩2,尚军年2,魏思斯2,胡正涛3
作者信息 +

Reliability of butterfly type connection structure of bridge pier FRP composite anti-collision sleeve box

  • ZHENG Zhi1,2, GENG Bo2, YUAN Pei2, SHANG Junnian2, WEI Sisi2, HU Zhengtao3
Author information +
文章历史 +

摘要

FRP复合材料防撞套箱各节段间连接方式的可靠性直接影响其防护性能。对一座双塔三跨斜拉桥过渡墩上复合材料防撞套箱所采用的一种蝴蝶型插销连接结构的可靠性进行研究,分别进行了材料性能试验,缩尺模型结构拉伸强度试验,并根据试验结果定义了正交各向异性本构。采用Midas Fea与LS-dyna对连接结构的可靠性分别进行静、动力分析。结果表明,该连接结构可靠性良好,可保证防撞套箱充分发挥防护性能。

Abstract

The reliability of connection mode among various segments of bridge pier FRP composite anti-collision sleeve box directly affects the box’s protective performance. Here, the reliability of a butterfly type thumb lock connection structure for composite anti-collision sleeve box used on transition pier of a 2-tower 3-span cable-stayed bridge was analyzed. The material performance tests and the scale model structure tensile strength tests were conducted for the butterfly type connection structure. Then, its orthogonal anisotropy constitutive was defined based on test results. Static and dynamic analyses were performed for the reliability of the connection structure using the software Midas Fea and LS-dyna, respectively. The results showed that the reliability of this type connection structure is good; it can ensure the FRP composite anti-collision sleeve box to give full play to the protective performance.

关键词

FRP / 防撞套箱 / 连接 / 结构试验 / 数值模拟

Key words

FRP / anti-collision sleeve box / connection / structural test / numerical simulation

引用本文

导出引用
郑植1,2,耿波2,袁佩2,尚军年2,魏思斯2,胡正涛3. 桥墩FRP复合材料防撞套箱蝴蝶型连接结构可靠性研究[J]. 振动与冲击, 2020, 39(1): 281-288
ZHENG Zhi1,2, GENG Bo2, YUAN Pei2, SHANG Junnian2, WEI Sisi2, HU Zhengtao3. Reliability of butterfly type connection structure of bridge pier FRP composite anti-collision sleeve box[J]. Journal of Vibration and Shock, 2020, 39(1): 281-288

参考文献

[1] 郑植. 基于刚度匹配的防撞设施设计方法研究[D]重庆:重庆交通大学,2017.
[2] Larsen O D. Ship collision with bridges: The interaction between vessel traffic and bridge structures [C]. IABSE Structural Engineering Document 4.Switzerland,1993.
[3] Voyiadjis G Z,Sherif EI-Tawil P E,Kocke P J.Feasibility of tubular fender units for pier protection against vessel collision[R].Louisiana Transportation Research Center,2008.
[4] 王君杰,耿波.桥梁船撞概率风险评估与措施[M].中国:人民交通出版社,2010.
[5] 耿波,王福敏,汪宏.三峡库区桥梁船撞技术与工程实践[M].中国:人民交通出版社,2016.
[6] 陈明栋,陈明,陈国虞等.安庆长江铁路大桥防船撞研究[J].重庆交通大学学报:自然科学版,2009,28(2):203-207.
Cheng Ming-dong,Cheng Ming,Cheng Guo-yu,et al.Study on Anti-ship Collision for Anqing Yangze River Railway Bridge[J].Journa of Chongqing Jiaotong University: Natural Science,2009,28(2):203-207.
[7] 张锡祥,王智祥,巫祖烈等.一种新型FRP桥墩防撞浮箱结构[J].重庆交通大学学报:自然科学版,2011,30(3):388-393.
Zhang Xi-xiang,Wang Zhi-xiang,Wu Zu-lie,et al.A late-model FRP floating pontoon protection structure for bridge piers in the ship collison[J].Journa of Chongqing Jiaotong University: Natural Science,2011,30(3):388-393.
[8] 姜华,耿波,张锡祥.桥墩新型防船撞装置防撞性能研究[J].振动与冲击,2014,33(7):155-160.
Jiang Hua,Geng Bo,Zhang Xi-xiang. A new fender system for bridge pier protection against vessel collision[J]. Journa of Vibration and SHOCK,2014,33(7):155-160.
[9] 许薛军,单成林.夹层结构曲面环形浮式桥墩防撞套箱碰撞分析[J].湖南大学学报:自然科学版,2015,42(3):107-111.
XU Xue-jun,SHAN Cheng-lin.IMPact Analysis of the Bridge Pier Anti-collision Floating Box Sets Made by Sandwich Structure with Curved-shaped[J].Journa of Hu Nan University: Natural Science,2015,42(3):107-111
[10] 潘晋,张小强,许明财等.船-桥梁浮式钢套箱碰撞数值模拟中的流场处理方法对比研究[J].振动与冲击,2016,35(7):125-129.
Pan Jin,ZHANG Xiao-qiang,XU Ming-cai,et al. Two fluid field processing method’s results coMPanson for numerical simulation of collision between a ship and a floating anti-collision steel box[J]. Journa of Vibration and SHOCK,2016,35(7):125-129.
[11]  招商局重庆交通科研设计院有限元公司.东雷高速通明海特大桥船撞风险评估与设防标准专题研究[R],2016.
[12] 招商局重庆交通科研设计院有限元公司.东雷高速通明海特大桥防撞设施设计方案研究[R],2016.
[13]  中华人民共和国国家标准. 纤维增强塑料性能试验方法总则( GB/T 1446—2005 [S].
[14]  中华人民共和国国家标准.纤维增强速率拉伸性能试验方法(GB/T 1447—2005)[S].
[15]  中华人民共和国国家标准.纤维增强塑料压缩性能试验方法(GB/T 1448—2005)[S].
[16] 中华人民共和国国家标准.纤维增强塑料弯曲性能试验方法(GB/T 1449—2005)[S].
[17] 中华人民共和国国家标准.纤维增强塑料简支梁式冲击韧性试验方法(GB/T 1451—2005)[S].
[18] 招商局重庆交通科研设计院有限公司.东雷高速通明海特大桥复合材料防撞设施设计理论与试验研究[R],2016.
[19] JTG D63-2007公路桥涵地基与基础设计规范[S].
[20] LS-DYNA Keyword User’s Manual Ver. 971[M]. Livermore Software Technology Corporation,LSCT,2010.

PDF(3416 KB)

377

Accesses

0

Citation

Detail

段落导航
相关文章

/