基于替代模型的岸桥随机有限元模型修正

秦仙蓉,詹澎明,赵书振,潘杰,孙远韬,张氢

振动与冲击 ›› 2020, Vol. 39 ›› Issue (1) : 43-48.

PDF(991 KB)
PDF(991 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (1) : 43-48.
论文

基于替代模型的岸桥随机有限元模型修正

  • 秦仙蓉,詹澎明,赵书振,潘杰,孙远韬,张氢
作者信息 +

Updating of stochastic finite element model of a quayside container crane based on meta-model

  • QIN Xianrong, ZHAN Pengming, ZHAO Shuzhen, PAN Jie, SUN Yuantao, ZHANG Qing
Author information +
文章历史 +

摘要

研究了考虑参数随机不确定性的岸桥有限元模型修正问题。首先,假设岸桥的待修正参数和模态参数都服从正态分布,将不确定性模型修正问题转化为均值和标准差的修正问题;其次,以某岸桥为研究对象,进行风振响应实测,利用随机子空间法得到岸桥前4阶实测模态参数;最后建立岸桥的有限元模型,基于Kriging替代模型及多目标遗传算法对岸桥结构进行有限元模型修正。结果表明,考虑参数不确定性的随机有限元模型修正方法能有效修正岸桥结构参数的均值和标准差。

Abstract

The updating of a quayside container crane (QCC) finite element model considering stochastic uncertainty of parameters was studied. Firstly, assuming that parameters to be updated and modal parameters of a QCC obey normal distribution, an updating problem of a model with uncertainty was converted into updating problems of mean and standard deviation. Then, a certain QCC was taken as the study object, its wind induced vibration responses were measured, and its first four orders measured modal parameters were obtained using the stochastic subspace method. Finally, the finite element model of this QCC was established, and the model was updated based on Kriging meta-model and multi-objective genetic algorithm. The results showed that the proposed stochastic finite element model updating method considering parametric uncertainty can be used to effectively update parameters’ mean and standard deviation of a QCC structure.

关键词

岸桥 / 模型修正 / 不确定性 / Kriging替代模型

Key words

quayside container crane (QCC) / model updating / uncertainty / Kriging meta-model

引用本文

导出引用
秦仙蓉,詹澎明,赵书振,潘杰,孙远韬,张氢. 基于替代模型的岸桥随机有限元模型修正[J]. 振动与冲击, 2020, 39(1): 43-48
QIN Xianrong, ZHAN Pengming, ZHAO Shuzhen, PAN Jie, SUN Yuantao, ZHANG Qing. Updating of stochastic finite element model of a quayside container crane based on meta-model[J]. Journal of Vibration and Shock, 2020, 39(1): 43-48

参考文献

[1] Mottershead J E, Link M, Friswell M I. The sensitivity method in finite element model updating: A tutorial[J]. Mechanical Systems & Signal Processing, 2011, 25(7):2275-2296.
[2] 李辉, 丁桦. 结构动力模型修正方法研究进展[J]. 力学进展, 2005, 35(2):170-180.
Li Hui, Ding Hua, Process in model updating for structural dynamics[J]. Advances in Mechanics, 2005, 35(2):170-180.
[3] Khodaparast H H, Mottershead J E, Badcock K J. Interval model updating with irreducible uncertainty using the Kriging predictor[J]. Mechanical Systems & Signal Processing, 2011, 25(4):1204-1226.
[4] Rui Q, Ouyang H, Wang H Y. An efficient statistically equivalent reduced method on stochastic model updating[J]. Applied Mathematical Modelling, 2013, 37(8):6079-6096.
[5] Husain N A, Khodaparast H H, Ouyang H. Parameter selection and stochastic model updating using perturbation methods with parameter weighting matrix assignment[J]. Mechanical Systems & Signal Processing, 2012, 32(4):135-152.
[6] Govers Y, Link M. Stochastic model updating—Covariance matrix adjustment from uncertain experimental modal data[J]. Mechanical Systems & Signal Processing, 2010, 24(2009):696–706.
[7] 张冬冬,郭勤涛. Kriging响应面代理模型在有限元模型确认中的应用[J]. 振动与冲击, 2013, 32(9):187-191.
ZHANG Dongdong, GUO Qintao. Application of Kriging response surface in finite element model validation [J]. Journal of Vibration and Shock, 2013, 32(9): 187-191.
[8] 方圣恩, 林友勤, 夏樟华. 考虑结构参数不确定性的随机模型修正方法[J]. 振动、测试与诊断, 2014, 34(5):832-837.
FANG Sheng en, LIN Youqin, XIA Zhanghua. Stochastic model updating method considering the uncertainties of structural parameters[J]. Journal of Vibration, Measurement and Diagnosis, 2014, 34(5): 832-837.
[9] 姚春柱, 王红岩, 芮强,等. 车辆点焊结构有限元模型参数不确定性修正方法[J]. 机械科学与技术, 2014, 33(10):1545-1550.
YAO Chunzhu, WANG Hongyan, RUI Qiang, et al. Finite element model parameter uncertainty updating method for vehicle spot welding structure[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(10):1545-1550.
[10] 姜东, 费庆国, 吴邵庆. 基于区间分析的不确定性结构动力学模型修正方法[J]. 振动工程学报, 2015, 28(3):352-358.
JIANG Dong, FEI Qingguo, WU Shaoqing. Updating of structural dynamics model with uncertainty based on interval analysis[J]. Journal of Vibration Engineering, 2015, 28(3):352-358.
[11] Martin J D, Simpson T W. On the Use of Kriging Models to Approximate Deterministic Computer Models[C]// ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2004:481-492.
[12] Zhang W, Liu Y. Main Factor Sensitivity Analysis Based on Response Surface Model Updating of Port Crane Structure[J]. Journal of Coastal Research, 2015, 73:166-172.
[13] LOPHAVEN S N, NIELSEN H B, SNDERGAARD J. DACE: a matlab kriging toolbox[R]. Technical Report MM-TR-2002-12. Denmark: Technical University of Denmark, 2002.
[14] 钟儒勉, 樊星辰, 黄学漾,等. 基于两阶段响应面方法的结合梁斜拉桥多尺度有限元模型修正[J]. 东南大学学报(自然科学版), 2013, 43(5):993-999.
ZHONG Rumian, FAN Xingchen, HUANG Xueyang, et,al. Multi-scale finite element model updating of composite cable-stayed bridge based on two-phase response surface methods[J]. Journal of Southeast University (Natural Science Edition), 2013(5):993-999.
[15] Bao N, Wang C. A Monte Carlo simulation based inverse propagation method for stochastic model updating[J]. Mechanical Systems & Signal Processing, 2015, s 60–61:928-944.

PDF(991 KB)

Accesses

Citation

Detail

段落导航
相关文章

/