潜孔锤破岩系统动力学特性研究

蔡芝源1,江红祥1,2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (1) : 62-69.

PDF(909 KB)
PDF(909 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (1) : 62-69.
论文

潜孔锤破岩系统动力学特性研究

  • 蔡芝源1,江红祥1,2
作者信息 +

Dynamic characteristics of rock crushing system with DTH hammer

  • CAI Zhiyuan1, JIANG Hongxiang1,2
Author information +
文章历史 +

摘要

为深入研究潜孔锤破岩过程中推进力、激振频率等对潜孔锤破岩系统特性的影响,基于弹簧、阻尼、滑动器等元件建立了考虑潜孔锤与岩石局部接触、完全接触状态的动力学模型。分别建立不同状态下系统的动力学方程,并基于阶跃函数建立破岩系统的连续无量纲微分方程组,采用龙格-库塔法求解获得不同状态下的潜孔锤钻头位移图、速度图、相空间图以及庞加莱截面图。结果表明:破岩系统的运动状态随推进力改变而改变,当系统处于周期-1状态时,系统相对较稳定且破岩效率最佳;随着激振力频率增大,系统稳定的区间范围随之增加,但破岩效率反而降低。破岩系统动力学特性研究结果为潜孔锤在实际工作中的参数确定提供理论依据。

Abstract

In order to deeply study effects of propulsion force and exciting frequency on characteristics of a rock crushing system with down-the-hole (DTH) hammer in rock fragmentation process, a dynamic model considering local contact and complete contact states between DTH hammer and rock was established based on spring, damper, slider and other components. Dynamic equations of the system under different states were established, respectively. The continuous dimensionless dynamic differential equations of the rock crushing system were established based on the step function. Runge-Kutta method was used to solve the equations, and obtain displacement diagram, velocity one, phase plane one and Poincaré sectional view of the DTH drill bit under different conditions. The results showed that the motion state of the rock crushing system changes with variation of propulsion, when the system is in the period-1 state, it is relatively stable and its rock crushing efficiency is best; with increase in exciting force frequency, the stable range of the system expands, but the rock crushing efficiency drops; the study results of dynamic characteristics of the rock crushing system provide a theoretical basis for determining parameters of DTH hammer under actual working conditions.

关键词

潜孔锤 / 动力学模型 / 破岩效率 / 周期运动 / 混沌运动

Key words

DTH hammer / dynamic model / rock crushing efficiency / periodic motion / chaotic motion

引用本文

导出引用
蔡芝源1,江红祥1,2. 潜孔锤破岩系统动力学特性研究[J]. 振动与冲击, 2020, 39(1): 62-69
CAI Zhiyuan1, JIANG Hongxiang1,2. Dynamic characteristics of rock crushing system with DTH hammer[J]. Journal of Vibration and Shock, 2020, 39(1): 62-69

参考文献

[1] Samuel G.R. Percussion drilling. Is it a lost technique? A review. In: SPE 35240, The Permian basin oil & gas recovery conference, Mildland, TX, USA, 1996.
[2] 张强,索江伟,王海舰,等. 基于ABAQUS的凿岩机钻头破岩数值模拟分析[J]. 振动与冲击,2018.,37(1): 136-141.
    ZHANG Qiang, SUO Jiang-wei, WANG Hai-jian, et al. Numerical simulation analysis of rock breaking of rock drill bit based on ABAQUS[J]. Journal of Vibration and Shock, 2018, 37(1): 136-141.
[3] 李思琪,李玮,闫铁,等. 复合载荷作用下钻头冲击破岩机理研究及现场应用[J]. 振动与冲击,2017,36(16): 51-55+112.
    LI Si-qi, LI Wei, YAN Tie, et al. Research on the mechanism of bit impact rock breaking under the action of composite load and its field application[J]. Journal of Vibration and Shock, 2017, 36(16): 51-55+112.
[4]  Shi C S, Zhu X H, Luo H. Study of DTH Bit–Rock Interaction Numerical Simulation Method and DTH Bit Properties Evaluation[J]. Arabian Journal for Science and Engineering. 2017, 42(5): 2179-2190.
[5] Kivade S.B, Murthy C.S.N, Vardhan H. Experimental investigations on penetration rate of percussive drill[J]. Procedia Earth and Planetary Science, 2015, 11: 89-99.
[6] Yang Y X, Zhang C L, Min L, et al. Research on rock-breaking mechanism of cross-cutting PDC bit[J]. Journal of Petroleum Science and Engineering, 2018, 161: 657-666.
[7] Wang J J, Zou D Y, He R Q. Experimental Study on Force of PDC Cutter Breaking Rock. Procedia Engineering[J], 2014, 73: 258-263.
[8] Jiang H X, Du C L, Liu S Y, et al. Nonlinear dynamic characteristics of load time series in rock cutting[J]. Journal of Vibro engineering, 2014, 16(1): 292-302.
[9] Jiang H X, Du C L, Liu S Y, et al. Fractal characteristic of rock cutting load time series[J]. Discrete Dynamics in Nature and Society, 2014, 2014: 1-8.
[10] Liao M L, Su Y N, Zhou Y C. Oscillation reconstruction and bifurcation analysis of a drill bit-rock vibro-impact system[J]. International Journal of Bifurcation and Chaos, 2017, 27(1): 1750013.
[11] Liao M L, Liu Y, Chavez JP, et al. Dynamics of vibro-impact drilling with linear and nonlinear rock models[J]. International Journal of Mechanical Sciences, 2018, 146: 200-210.
[12] Liu Y S, Gao D L. A nonlinear dynamic model for characterizing downhole motions of drilling in a deviated well[J], Journal of Natural Gas Science and Engineering, 2017, 38: 466-474.
[13] Wang H, Guan Z C, Shi Y C, et al. Modeling and analyzing the motion state of bottom hole assembly in highly deviated wells[J], Journal of Petroleum Science and Engineering, 2018, 170: 763-771.
[14] Liu Y B, Wang Q, Xu H. Analytical determination of bifurcations of periodic solution in three-degree-of-freedom vibro-impact systems with clearance[J]. Chaos, Solitons & Fractals, 2017, 99: 141-154.
[15] Liu Y B, Wang Q, Xu H. Bifurcations of periodic motion in a three-degree-of-freedom vibro-impact system with clearance[J], Communications in Nonlinear Science and Numerical Simulation, 2017, 48: 1-17.
[16] Depouhon A, Denoël V, Detournay E. Numerical simulation of percussive drilling[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(8): 889-912.
[17] Páez Chávez J, Pavlovskaia E, Wiercigroch M. Bifurcation analysis of a piecewise-linear impact oscillator with drift[J]. Nonlinear Dynamics, 2014, 77(1-2): 213-227.
[18] 吕小红,朱喜锋, 一类冲击钻进机械系统的动力学特性[J]. 振动与冲击,2011, 30(06): 239-242.
    LU Xiao-hong, ZHU Xi-feng, Dynamic characteristics of a class of impact drilling mechanical systems[J]. Journal of Vibration and Shock. 2011, 30(06): 239-242.
[19] Liu Y, Páez Chávez J, Pavlovskaia E, et al. Analysis and control of the dynamical response of a higher order drifting oscillator[EB/OL]. http://dx.doi.org/10.1098/rspa.2017.0500.
[21] Pavlovskaia E, Hendry D.C, Wiercigroch M. Modelling of high frequency vibro-impact drilling[J]. International Journal of Mechanical Sciences, 2015, 91: 110-119.
[22] Pavlovskaia E, Wiercigroch M, Grebogi C. Modeling of an impact system with a drift[J]. Physical Review E, 2001, 64(5): 056224.
[23] 范永涛, 黄志强, 高德利, 等. 物探冲旋钻头破岩机理仿真研究[J]. 石油钻探技术, 2011, 39(3): 110-113.
    FAN Yong-tao, HUANG Zhi-qiang, GAO Dei-li, et al. Simulation research on rock breaking mechanism of geophysical sweeping drill[J].  Petroleum Drilling Techniques, 2011, 39(3): 110-113.
[24] Song H Y, Shi H Z, Ji Z S, et al. The percussive process and energy transfer efficiency of percussive drilling with consideration of rock damage[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 119: 1-12.
[25] 江红祥. 高压水射流截割头破岩性能及动力学研究[D]. 徐州: 中国矿业大学, 2015.
    JIANG Hongxiang. Study on rock fragmentation performance of high-pressure water-jets cutting head and its dynamics[D]. Xuzhou: China University of Mining and Technology, 2015.
[26] 罗冠炜, 俞建宁, 尧辉明, 等. 含间隙振动系统的周期运动和分岔[J]. 机械工程学报, 2006(02): 87-95.
    LUO Guan-wei, YU Jian-ning, YAO Hui-ming, et al. Periodic Motion and Bifurcation of a Vibrating System with Clearance[J]. Chinese Journal of Mechanical Engineering, 2006(02): 87-95.

PDF(909 KB)

361

Accesses

0

Citation

Detail

段落导航
相关文章

/