摘要
季节性冻土区高速铁路无砟轨道路基冻胀,影响了列车运行的安全性、舒适性以及无砟轨道主体结构的服役性能。为研究路基冻胀和高速行车荷载组合效应下的轮轨动力响应,建立了车辆-轨道-路基冻胀耦合动力学模型,对路基不同冻胀幅值、冻胀位置和行车速度下CRTSⅠ型板式无砟轨道轮轨动力响应及轨道结构受力进行分析。结果表明:冻胀发生区段轮轨动力响应增大,列车以350 km/h运行时的安全性和舒适性满足冻胀管理标准要求,但轮轨力随冻胀幅值和速度的增加而增大;轨道板和底座板振动加剧,在计算冻胀波长和幅值范围内,离缝处轨道板振动加速度峰值超过动态验收标准要求,容易引起离缝处CA砂浆层及路基基床表层伤损破坏,且轨道板、底座板振动加速度随行车速度增加而增大;轨道结构动应力和列车荷载传递关系密切,路基冻胀状态下列车荷载引起轨道板和底座板处于交替和交变的拉压受力状态,需要在设计中提出控制裂纹的措施,行车速度对短波冻胀时轨道结构受力影响较小。
Abstract
Frost heave of high-speed railway ballastless track subgrade in seasonal frost areas affects the safety and comfort of train operation and service performance of ballastless track’s main structure. In order to study dynamic response of wheel-rail under the combination effect of subgrade frost heave and high-speed driving load, the vehicle-track-subgrade frost heave coupled dynamic model was established to analyze the wheel-rail dynamic response of CRTSI type slab ballastless track and track structure’s stress state under different frost heave peak values, frost heave positions and train speeds. The results showed that dynamic response of wheel-rail increases in frost heave regions, the safety and comfort of train operation at speed of 350km/h meet the standard requirements of frost heave management, but wheel-rail force increases with increase in frost heave peak values and operation speed; vibration of track slab and base plate intensifies; within calculated range of frost heave wavelength and amplitude, peak value of vibration acceleration of track slab at gaps exceeds dynamic acceptance standard requirements, and it is easy to cause damage and failure of CA mortar layer and subgrade bed surface at gaps, vibration accelerations of track slab and base plate increase with increase in driving speed, dynamic stress of track structure is closely related to train load transmission; train load under state of subgrade frost heave causes track slab and base plate to be in tension and compression alternating state, and proposing measures in design is needed to control cracks; train speed has less effects on track structure stress during shortwave subgrade frost heave.
关键词
路基冻胀 /
动力响应 /
高速铁路 /
无砟轨道
{{custom_keyword}} /
Key words
subgrade frost heave /
dynamic response /
high speed railway /
ballastless track
{{custom_keyword}} /
张鲁顺1,赵国堂1,2.
基于高速铁路路基冻胀的轮轨动力响应研究[J]. 振动与冲击, 2020, 39(1): 8-14
ZHANG Lushun1,ZHAO Guotang1,2.
Dynamic response of wheel-rail based on frost heave of high-speed railway subgrade[J]. Journal of Vibration and Shock, 2020, 39(1): 8-14
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 蔡德钩. 高速铁路季节性冻土路基冻胀时空分布规律试验[J]. 中国铁道科学,2016,37(3):16-21.
Cai Degou. Test on frost heaving spatial-temporal distribution of high speed railway subgrade in seasonal frozen soil region[J]. China Railway Science,2016,37(3):16-21.
[2] 王春雷,张戎恳,赵晓萌,等. 季节冻土区高速铁路路基冻胀监测系统及冻胀规律研究[J]. 冰川冻土,2014,36(4):962-968.
Wang Chunlei,Zhang Rongken,Zhao Xiaomeng,et al. Frost Heaving Monitoring System and Frost Heaving Rules for the High-speed Railway Embankment in the Seasonally Frozen Soil Regions[J]. Journal of Glaciology and Geocryology,2014,36(4):962-968.
[3] 石刚强,赵世运,李先明,等. 严寒地区高速铁路路基冻胀变形监测分析[J] 冰川冻土,2014,36(2):360-368.
Shi Gangqiang,Zhao Shiyun,Li Xianming,et al. The Frost Heaving Deformation of High-speed Railway Subgrades in Cold Regions:Monitoring and analyzing[J] Journal of Glaciology and Geocryology,2014,36(2):360-368.
[4] 赵国堂,蒋金洋,崔颖辉,等. 高速铁路路基填料中细颗粒分布特征及其对冻胀的影响[J]. 铁道学报,2017,39(10):1-9.
Zhao Guotang,Jiang Jinyang,Cui Yinghui,et al. Distribution features of fine-grain in filling materials of high-speed railway subgrade and its impact on frost heaving [J]. Journal of the China Railway Society,2017,39(10):1-9.
[5] 中国铁道科学研究院,哈大铁路客运专线有限责任公司,中铁第一勘察设计院集团有限公司,等.寒区铁路路基防冻胀结构及设计参数研究[R]. 北京:中国铁道科学研究院,2011.
[6] 中国铁道科学研究院,铁道第三勘察设计院集团有限公司,哈齐铁路客运专线有限责任公司,等. 高寒地区高速铁路路基冻胀综合防治技术试验研究[R]. 北京:中国铁道科学研究院,2015.
[7] 赵国堂. 严寒地区高速铁路无砟轨道路基冻胀管理标准的研究[J]. 铁道学报,2016,38(3):1-8.
Zhao Guotang. Research on Management Standard of Subgrade Frost Heaving of Ballastless Track on High-speed Railway in Severe Cold Regions[J]. Journal of the China Railway Society,2016,38(3):1-8.
[8] 赵国堂,赵磊,张鲁顺. 基于高速铁路路基冻胀的无砟轨道受力特征[J]. 铁道工程学报,2017,227(8):53-61.
Zhao Guotang,Zhao Lei,Zhang Lushun. Mechanical Characteristics of Ballastless Track under Subgrade Frost Heaving in High-speed Railway[J]. Journal of Railway Engineering Society,2017,227(8):53-61.
[9] 吴忠伦. 高速铁路路基冻胀对轨道不平顺的影响分析及动力响应[D]. 北京:北京交通大学,2015.
[10] 郭毅. 高速铁路路基冻胀变形引起的轨道结构变形特性及其对行车的动力影响研究[D]. 成都:西南交通大学,2016.
[11] 郭亮武. 严寒地区路基冻胀下车辆-无砟轨道系统的动力学行为研究[D]. 北京:北京交通大学,2017.
[12] 杨国涛,高亮,刘秀波,等. 基于动力分析的CRTSⅢ型板式无砟轨道路基冻胀控制标准研究[J]. 铁道学报,2017,39(10):110-117.
Yang Guotao,Gao Liang,Liu Xiubo,et al. Research on Division Standard of Subgrade Frost Heaving for CRTSⅢ Slab Track Based on Dynamic Analysis[J]. Journal of the China Railway Society,2017,39(10):110-117.
[13] 赵国堂,刘秀波,高亮,等. 哈大高速铁路路基冻胀区轨道不平顺特征分析[J]. 铁道学报,2016,38(7):105-109.
Zhao Guotang,Liu Xiubo,Gao Liang,et al. Characteristic Analysis of Track Irregularity in subgrade Frost Heave Area of Harbin-Dalian High-speed Railway[J]. Journal of the China Railway Society,2016,38(7):105-109.
[14] 中国铁道科学研究院. 高速铁路工程动态验收技术规范(TB10761-2013)[S]. 北京:中国铁道出版社,2013.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}