
基于Burg功率谱的无砟轨道功能层缺陷边缘估计方法研究
Analysis on edge estimation of functional layer defect in ballastless track based on Burg power spectrum
无砟轨道 / 功能层缺陷 / 边缘估计 / Burg功率谱 {{custom_keyword}} /
ballastless track / functional layer defect / edge estimation / Burg power spectrum {{custom_keyword}} /
[1] 何华武. 我国客运专线应大力发展无砟轨道[J]. 中国铁路, 2005, 43(1): 11-15.
HE Huawu. Ballastless Track Shall be Developed in Great Efforts on Chinese Passenger Dedicated Lines[J]. Chinese Railways, 2005, 43(1): 11-15.
[2] 魏祥龙, 张智慧. 高速铁路无砟轨道主要病害(缺陷)分析与无损检测[J]. 铁道标准设计, 2011, 54(3): 38-40.
WEI Xianglong, Zhang Zhihui. Analysis and nondestructive detection on disease(defect) of high-speed railway ballastless track[J]. Railway Standard Design, 2001, 54(3): 38-40.
[3] Q/CR596-2017. 高速铁路CRTSIII型板式无砟轨道自密实混凝土[S]. 北京: 中国铁路总公司, 2017.
Q/CR596-2017. Specification of self-compacting concrete for high-speed railway CRTSIII slab ballastless track[S]. Beijing: China Railway Corporation, 2017.
[4] YANG Yong, Zhao Weigang. Curvelet transform-based identification of void diseases in ballastless track by ground-penetrating radar[J]. Structural Control and Health Monitoring, 2019, 26(4): 1-18.
[5] Milanfar P. Results from a forward-looking GPR mine detection system[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2008, 47(4): 700-711.
[6] Wu T., Fang J, Liu G, et al. Determination of elastic constants of a concrete specimen using transient elastic waves[J]. Journal of the Acoustical Society of America, 1997, 98(98): 2142-2148.
[7] Kim J H, Mander J B. Influence of transverse reinforcement on elastic shear stiffness of cracked concrete elements[J]. Engineering Structures, 2007, 29(8): 1798-1807.
[8] Wang H, Che A, Feng S, et al. Full waveform inversion applied in defect investigation for ballastless undertrack structure of high-speed railway[J]. Tunnelling & Underground Space Technology Incorporating Trenchless Technology Research, 2016, 51(1): 202-211.
[9] Che Ailan, Tang Zheng, Feng Shaokong. An elastic-wave-based full-wavefield imaging method for investigating defects in a high-speed railway under-track structure[J]. Soil Dynamics and Earthquake Engineering , 2015, 77(1): 299-308.
[10] 杨鸿凯, 车爱兰, 汤政, 等.基于弹性波理论的高铁线下结构病害快速检测方法[J]. 上海交通大学学报, 2015, 49(7): 1010-1016.
YANG Hongkai, CHE Ailan, TANG Zheng, et al. Elastic-wave-based detection method for under line structure of high-speed railway[J]. Journal of Shanghai Jiao Tong University, 2015, 49(7): 1010-1016.
[11] 盘龙江. 基于弹性波CT法的无砟轨道底座板混凝土状态检测技术[J]. 铁道建筑, 2018, 58(8): 93-96.
PAN Longjiang. Concrete Inspection Technique for Ballastless Track Base Plate Using Elastic Wave CT Method[J]. Railway Engineering, 2018, 58(8): 93-96.
[12] Tian Xiushu, Zhao Weigang, Du Yangliang, Wang Baoxian. Detection of mortar defects in ballastless tracks of high-speed railway using transient elastic wave method. Journal of Civil Structural Health Monitoring, 2018, 8(1), 151-160.
[13] 田秀淑, 杜彦良, 赵维刚. 基于瞬态冲击响应特性的无砟轨道砂浆层脱空的检测和识别[J]. 振动与冲击, 2019, 18(38): 148-153.
TIAN Xiushu, DU Yanliang, ZHAO Weigang. Detection and identification of mortar void in ballastless track of high-speed railway based on transient impact characteristics[J]. Journal of Vibration and Shock, 2019, 18(38): 148-153.
[14] Lades M, Vorbruggen J C, Buhmann J, et al. Distortion Invariant Object Recognition in the Dynamic Link Architecture[J]. IEEE Transactions on Computers, 1993, 42(3): 300-311.
[15] 刘晞远, 胡昊颖, 吴珊,等. AR模型的谱分辨率及小信噪比下的性能分析[J]. 舰船电子工程, 2018, 38 (7): 131-136.
LIU Xiyuan, HU Haoying, WU Shan, et al. Performance Analysis on Spectrum Resolution Ratio and Small Noise-signal Ratio of AR Model-based Power Spectrum Estimation[J]. Ship Electronic Engineering, 2018, 38(7): 131-136.
[16] Oliver M A, Webster R. Kriging: method of interpolation for geographical information systems[J]. International Journal of Geographical Information Systems, 1990, 4(3): 313-332.
/
〈 |
|
〉 |