Kevlar织物软壁包容环抗冲击数值仿真分析研究

冯振宇,裴惠,迟琪琳,解江,牟浩蕾

振动与冲击 ›› 2020, Vol. 39 ›› Issue (10) : 15-23.

PDF(2664 KB)
PDF(2664 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (10) : 15-23.
论文

Kevlar织物软壁包容环抗冲击数值仿真分析研究

  • 冯振宇,裴惠,迟琪琳,解江,牟浩蕾
作者信息 +

Investigation on the high speed impact numerical simulation of Kevlar fabrics soft-wall containment

  • FENG Zhenyu,PEI Hui,CHI Qilin,XIE Jiang,MOU Haolei
Author information +
文章历史 +

摘要

针对机匣包容性问题,提出Kevlar平纹织物本构模型的拟合方法,分别采用单层壳、多层壳、层合壳三种有限元建模方式对Kevlar织物软壁包容环弹道冲击过程进行模拟,发展了机匣包容性仿真分析模型。结果表明,多层壳模型和层合壳模型的计算结果更准确,并且可以通过调节摩擦因子使仿真结果与试验结果更接近。在此基础上研究了撞击点位置和弹体入射姿态对弹体剩余速度的影响。结果表明:在较小偏移距离内,撞击点的位置对剩余速度的影响可以忽略不计;滚转角和俯仰角对剩余速度影响较小,而对于偏航角,当角度大于30°时,剩余速度会随着角度的增大明显呈下降趋势,且弹体出射姿态也会发生明显变化。

Abstract

For the fan blade-out problem, a fitting method of constitutive model of Kevlar fabric was proposed.The ballistic impact numerical model of Kevlar soft-wall containment was established by three modeling methods: single-layer shell model, multi-layer shell model and stacked shell model and the simulation model was developed to evaluate the containment capability of the fan case.The results show that multi-layer shell model and staked shell model are more accurate, and simulation results are closer to experimental results by adjusting the friction factor.Based on this, the influence of impact position and incident attitude of projectile on its residual velocity was studied.The results show that the influence of the impact position is negligible within a small offset distance.The roll angle and pitch angle have little effect.While for yaw angle, when it is greater than 30°, the residual velocity will obviously decrease with angle increment, and the attitude of the emergent projectile will change significantly.

关键词

Kevlar织物 / 软壁包容 / 有限元分析 / 剩余速度

Key words

Kevlar fabric / soft-wall containment / finite element analysis / residual velocity

引用本文

导出引用
冯振宇,裴惠,迟琪琳,解江,牟浩蕾. Kevlar织物软壁包容环抗冲击数值仿真分析研究[J]. 振动与冲击, 2020, 39(10): 15-23
FENG Zhenyu,PEI Hui,CHI Qilin,XIE Jiang,MOU Haolei. Investigation on the high speed impact numerical simulation of Kevlar fabrics soft-wall containment[J]. Journal of Vibration and Shock, 2020, 39(10): 15-23

参考文献

[1] Mcmillan A .Material development for fan blade containment ring[ J] .Journal of Physics :Conference Series , 2008 , 105 :12-22.

[2] 柴象海, 张晓云, 侯亮, et al. 航空发动机风扇机匣包容性等效试验与分析方法[J]. 振动与冲击, 2016, v.35;No.262(02):167-172.

CHAI Xianghai, ZHANG Xiaoyun, HOU Liang et al. Equivalent Test and Simulation Verification for Fun Containment Case of Aero Engine[J]. Journal of Vibration and Shock, 2016, v.35;No.262(02):167-172.

[3] Stopforth R , Adali S , Mechatronics S . Experimental study of bullet-proofing capabilities of Kevlar, of different weights and number of layers, with 9mm projectiles[J]. Defence Technology, 2019.

[4] Nilakantan  Gaurav,  Keefe  Michael,  Wetzel  Eric D.et al. Computational modeling of the probabilistic impact response of flexible fabrics[J]. Composite Structures, 2011, 93: 3163-3174.

[5] He Z , Xuan H , Bai C , et al. Containment tests and analysis of soft wall casing fabricated by wrapping Kevlar fabric around thin metal ring[J]. Aerospace Science and Technology, 2017, 61:35-44.

[6] Nilakantan G , Nutt S . Effects of clamping design on the ballistic impact response of soft body armor[J]. Composite Structures, 2014, 108:137-150.

[7]  Nilakantan G , Nutt S . Effects of fabric target shape and size on the V50 ballistic impact response of soft body armor[J]. Composite Structures, 2014, 116:661-669.

[8] Nilakantan G , Nutt S . Effects of ply orientation and material on the ballistic impact behavior of multilayer plain-weave aramid fabric targets[J]. Defence Technology, 2018(3).

[9]   Roylance David, Wang Su Su. Penetration  mechanics of textile structures: Influence of non-linear viscoelastic relaxation [J]. Polymer Engineering & Science, 1978, 1814: 1068-1072.

[10] Tan VBC, Shim VPW, Zeng X. Modeling crimp in woven fabrics subjected to ballistic impact [J]. International Journal of Impact Engineering, 2005, 321: 561-574.

[11] Pereira J. M., Revilock D. M. Explicit finite element analysis modeling of multilayer composite fabric for gas turbine engines containment systems, Part 2: ballistic impact testing[R], 2004.

[12] Revilock D. M., Pereira J. M. Explicit finite element analysis modeling of multilayer composite fabric for gas turbine engines containment systems, Phase II, Part 2: ballistic impact testing[R], 2009.

[13] Rajan S. D., Mobasher B., Stahlecker Z. Explicit finite element analysis modeling of multilayer composite  fabric  for  gas  turbine  engines  containment  systems,  Phase  III,  Part  1:Arizona  State University material model and numerical simulations [R], 2011.

[14] Simons  Jeffrey,  Erlich  David,  Shockey  Donald.  Explicit  finite  element  analysis  modeling  of multilayer  composite  fabric  for  gas  turbine  engines  containment  systems,  Phase  II,  Part  3:  material model development and simulation of experiments [R], 2009.

[15] Stahlecker Z, Mobasher B, Rajan S D, et al. Development of reliable modeling methodologies for engine fan blade out containment analysis. Part II: Finite element analysis[J]. International Journal of Impact Engineering. 2009, 36(3): 447-459.

[16] S.D. Rajan, B. Mobasher, A. Vaidya. Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems, Phase IV [R], 2014.

[17] Cowper, G.R. and Symonds, P.S., “Strain Hardening and Strain Rate Effect in the Impact Loading of Cantilever Beams,” Brown University, Division of Applied Mathematics, September 1957.

[18] Osborne M . Single-Element Characterization of the LS-DYNA MAT54 Material Model[J]. Dissertations & Theses - Gradworks, 2012.

[19] Zhu, D., Mobasher, B., and Rajan, S.D., “Finite Element Modeling of Ballistic Impact on Kevlar® 49 Fabrics,” Society for Experimental Mechanics–Annual Conference & Exposition on Experimental and Applied Mechanics, Uncasville, Connecticut, June 13-15, 2011.

[20] Rajan, S.D., Mobashir, B., Sharda, J., Yanna, V., Deenadaylu, C., Lau, D., and Shah, D., “Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems, Part 1: Static Tests and Modeling,” FAA report DOT/FAA/AR-04/40,P1, November 2004.

[21] Pereira, J.M. and Revilock, D.M., “Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems, Part 2: Ballistic Impact Testing,” FAA report, DOT/FAA/AR-04/40,P2, November 2004.


PDF(2664 KB)

Accesses

Citation

Detail

段落导航
相关文章

/