基于递归分析的微裂纹缺陷超声检测技术研究

冯玮,杨辰龙,边成亮, 周晓军

振动与冲击 ›› 2020, Vol. 39 ›› Issue (10) : 154-162.

PDF(3473 KB)
PDF(3473 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (10) : 154-162.
论文

基于递归分析的微裂纹缺陷超声检测技术研究

  • 冯玮,杨辰龙,边成亮, 周晓军
作者信息 +

Research on microcrack defect ultrasonic detection technology based on recurrence analysis

  • FENG Wei,YANG Chenlong,BIAN Chengliang,ZHOU Xiaojun
Author information +
文章历史 +

摘要

为准确检测金属构件微裂纹缺陷,采用超声脉冲反射法对金属试块进行检测,并提取超声背散射信号进行分析。通过对背散射信号进行简单的建模,说明其组成要素。由于背散射信号的非线性特征,缺陷回波信号会对系统的递归特性产生影响;在此基础上提出了基于递归分析的方法分别对含人工微裂纹缺陷金属试块的无缺陷区、单裂纹区及双裂纹区背散射信号进行检测研究;通过合理的参数选择,对采样信号进行递归分析并绘制递归图;对比含缺陷信号与无缺陷信号,发现前者会在递归图中产生明显的白色交叉条纹带。使用递归定量分析进一步研究了含缺陷背散射信号的递归特征量。结果表明多种特征量对缺陷回波信号比较敏感,其中递归率(RR)和捕获时间(TT)在缺陷位置有明显的特征。

Abstract

In order to accurately detect microcrack defects of metallic materials, the ultrasonic pulse echo method was adopted to detect the aluminum alloy test block, and the extracted ultrasonic backscattering signal was analyzed.The components of the backscattering signal were illustrated by simple modeling.Due to the nonlinearity of the backscattering signal, the defect echo signal would affect the recurrence characteristics of the system.In this paper, a recurrence analysis method was proposed to detect the backscattering signals in the crack-free zone, single-crackzone and double-crack zone of the metallic test block with artificial microcrack defects.Through reasonable parameters selection, the sampling signal was analyzed recursively and the recurrence plot was drawn.Comparing the defect signal with the defect-free signal, it was found that the obvious white cross stripe appears in the recurrence plot of the former.The recurrence characteristic quantities of the backscattering signals with defects were further studied by using recurrence quantification analysis.The results show that some characteristic quantities are more sensitive to the defect echo signals.The recurrence rate (RR) and trapping time (TT) have obvious characteristics at the defect location.

关键词

金属材料 / 背散射信号 / 递归分析 / 递归图 / 递归定量分析

Key words

metallic material / backscattering signal / recurrence analysis / recurrence plot / recurrence quantification analysis

引用本文

导出引用
冯玮,杨辰龙,边成亮, 周晓军 . 基于递归分析的微裂纹缺陷超声检测技术研究[J]. 振动与冲击, 2020, 39(10): 154-162
FENG Wei,YANG Chenlong,BIAN Chengliang,ZHOU Xiaojun. Research on microcrack defect ultrasonic detection technology based on recurrence analysis[J]. Journal of Vibration and Shock, 2020, 39(10): 154-162

参考文献

[1]       赵韩,钱德猛. 基于ANSYS的汽车结构轻量化设计[J]. 农业机械学报,200536(6)12-15.

ZHAO Han, QIAN Demeng. Research on Lightweight Design of Automobile Structure Based on ANSYS[J]. Transactions of the Chinese Society for Agricultural Machinery, 2005, 36(6): 12-15.

[2]       龙江启,兰凤崇,陈吉清. 车身轻量化与钢铝一体化结构新技术的研究进展[J]. 机械工程学报,200844(6):27-35.

LONG Jiangqi, LAN Fengchong, CHEN Jiqing. New Technology of Lightweight and Steel-aluminum Hybrid Structure Car Body[J]. Chinese Journal of Mechanical Engineering, 2008, 44(6): 27-35.

[3]       刘志文. 车身用铝型材制备过程中典型成形缺陷的仿真分析与优化控制[D]. 长沙:湖南大学,2017.

LIU Zhiwen. Simulation analysis and optimal control of typical forming defects in the preparation of complex aluminum profiles for vehicle body[D]. Changsha: Hunan University, 2017.

[4]       黄振峰,刘永坚,毛汉颖,等. 基于K熵和关联维数的金属疲劳损伤过程的声发射信号特征分析[J]. 振动与冲击,201736(15)210-214.

HUANG Zhenfeng, LIU Yongjian, MAO Hanying, et al. Feature analysis for acoustic emission signals during metal fatigue damage based on Kolmogorov entropy and correlation dimension[J]. Journal of Vibration and Shock, 2017, 36(15): 210-214.

[5]       阎红娟. 金属构件疲劳损伤非线性超声检测方法研究[D]. 北京:北京理工大学,2015.

YAN Hongjuan. Research on Nonlinear Ultrasonic Testing of the Fatigue Damage in Metallic Components[D]. Beijing: Beijing Institute of Technology, 2015.

[6]       DWIVEDI S K, VISHWAKARMA M, SONI P A. Advances and researches on non-destructive testing: A review[J]. Materials Today Proceedings, 2018, 5(2): 3690-3698.

[7]       Legendre S, Goyette J, Massicotte D. Ultrasonic NDE of composite material structures using wavelet coefficients[J]. NDT E Int., 2001, 34(1): 31-37.

[8]       Nam K W, Lee K C, Oh J H. Application of joint-time frequency analysis methods for nondestructive evaluation[J]. Am Sic Mech Eng Appl Mech Div AMD, 1999, 234:67-74.

[9]       DEMIRLI R, SANIIE J. Asymmetric Gaussian chirplet model and parameter estimation for generalized echo representation [J]. Journal of the Franklin Institute, 2014, 351(2): 907–921.

[10]    曾祥,吴学雷,周晓军,等. 基于S变换和时频谱空间滤波的超声缺陷回波检测方法[J]. 振动与冲击201736(22)34-39.

ZENG Xiang, WU Xuelei, ZHOU Xiaojun, et al. A flaw echo detection method based on S-transformation and time-frequence spectrum spatial filtering[J]. Journal of Vibration and Shock, 2017, 36(22): 34-39.

[11]    Castellanos L, Ramos A. Time-frequency analysis based on the scalogram technique of 0-order     ultrasonic X-waves assessing their viability as a detection tool in medical diagnosis[J]. Pan Am. Health Care Exch., PAHCE, 2010: 144-148..

[12]    YING C F, TRUELL R. Scattering of a Plane Longitudinal Wave by a Spherical Obstacle in an Isotropically Elastic Solid[J]. Journal of Applied Physics, 1956, 27(9):1086-1097.

[13]    Brandt C. A State Space Approach for the Non-Destructive Evaluation of CFRP with Ultrasonic   Testing[C]. International Symposium on Ndt in Aerospace. 2015.

[14]    Takens F. Detecting Strange Attractors in Turbulence[J]. Lecture Notes Math, 1982(898): 366-381.

[15]    闫润强. 语音信号动力学特性递归分析[D]. 上海:上海交通大学,2006.

YAN Runqiang. Recurrence Analysis of Dynamical Characteristics for Speech Signals[D]. Shanghai: Shanghai Jiao Tong University, 2006.

[16]    吕金虎张锁春. Lyapunov指数的数值计算方法[J]. 非线性动力学学报20018(1)84-92.

LÜ Jinhu, ZHANG Suochun. The Numerical Calculating Method of Lyapunov Exponent[C]. Journal of Nonlinear Dynamics in Science and Technology, 2001, 8(1): 84-92.

[17]    姚勇. 熵、分维、李雅普诺夫指数与混沌[J]. 自然杂志,198710(5)359-365.

YAO Yong. Entropy, Fractal Dimension, Lyapunov Index and Chaos[J]. Chinese Journal of Nature, 1987, 10(5): 359-365.

[18]    Matthew B K, Brown R, Abarbanel H D I. Determining embedding dimension for phase-space reconstruction using a geometrical construction[J]. Physical Review A, 1992, 45(6): 3404-3411.

[19]    Eckmann J P, Kamphorst S O, Ruelle D. Recurrence Plots of Dynamical Systems[J]. Europhysics Letters, 1987, 4(9): 973-977.

[20]    Marwan N, Carmenromano M, Thiel M, et al. Recurrence plots for the analysis of complex systems[J]. Physics Reports, 2007, 438(5-6): 237-329.


PDF(3473 KB)

Accesses

Citation

Detail

段落导航
相关文章

/