基于VMD-DE的坦克行星变速箱故障诊断方法研究

吴守军1,冯辅周1,吴春志1,李本2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (10) : 170-179.

PDF(2511 KB)
PDF(2511 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (10) : 170-179.
论文

基于VMD-DE的坦克行星变速箱故障诊断方法研究

  • 吴守军1,冯辅周1,吴春志1,李本2
作者信息 +

Research on fault diagnosis method of tank planetary gearbox based on VMD-DE

  • WU Shoujun1,FENG Fuzhou1,WU Chunzhi1,LI Ben2
Author information +
文章历史 +

摘要

为了提高坦克行星变速箱齿轮故障模式识别准确率,将变分模态分解(VMD)与散布熵(DE)结合提出故障特征提取新方法。利用波形法确定VMD分解层数,VMD分解振动信号得到一组固有模态分量(IMF);根据归一化互信息准则筛选若干IMF重构信号,计算重构信号的散布熵;将重构信号散布熵作为特征值输入到粒子群优化(PSO)的多分类支持向量机(SVM)中实现故障模式识别。通过对坦克行星变速箱的正常、行星轮故障和太阳轮故障三种状态进行模式识别,分类准确率达到100%,且计算时间较短。与基于原始振动信号DE、VMD-SE(样本熵)、VMD-PE(排列熵)及EMD-DE(经验模态分解与DE结合)等方法比较,综合考虑准确率和计算时间两个因素,基于VMD-DE的方法故障诊断性能最佳。

Abstract

In order to improve fault pattern recognition accuracy of tank planetary gearbox, this work proposed a new fault feature extraction method based on variational mode decomposition (VMD) and dispersion entropy (DE).First, intrinsic mode function (IMF) number was determined by waveform method.Next, VMD was used to decompose vibration signal to obtain a set of IMFs.Then, normalized mutual information criterion was used to screen several IMF for signal reconstruction.And then, dispersion entropy of reconstructed signal was calculated.Last, dispersion entropy was input into support vector machine (SVM), which was optimized by particle swarm optimization (PSO), to realize fault pattern recognition.The pattern recognition accuracy of the normal, planetary gear fault and sun gear fault of planetary gearbox was 100% with a relatively short computing time.Compared with methods of original signal DE, VMD-SE, VMD-PE and EMD-DE, the results show that VMD-DE methods has the best fault pattern recognition performance.

关键词

行星变速箱 / 故障诊断 / 变分模态分解(VMD) / 散布熵(DE) / 粒子群优化(PSO) / 支持向量机(SVM)

Key words

planetary gearbox / fault diagnosis / variational mode decomposition(VMD) / dispersion entropy(DE) / particle swarm optimization(PSO) / support vector machine(SVM)

引用本文

导出引用
吴守军1,冯辅周1,吴春志1,李本2. 基于VMD-DE的坦克行星变速箱故障诊断方法研究[J]. 振动与冲击, 2020, 39(10): 170-179
WU Shoujun1,FENG Fuzhou1,WU Chunzhi1,LI Ben2. Research on fault diagnosis method of tank planetary gearbox based on VMD-DE[J]. Journal of Vibration and Shock, 2020, 39(10): 170-179

参考文献

 

[1]丁闯, 张兵志, 冯辅周,等.局部均值分解和排列熵在行星齿轮箱故障诊断中的应用[J].振动与冲击, 2017,36(17): 56-60.
DIND Chuang, ZHANG Bingzhi, FENG Fuzhou, et al.Application of local mean decomposition and permutation entropy in fault diagnosis of planetary gearboxes[J].Journal of Vibration and Shock, 2017,36(17): 56-60.
[2]杨望灿, 张培林, 张云强, 等.利用VMD的双标度分形维数特征提取方法[J].哈尔滨工业大学学报, 2019, 51(1): 133-139.
YANG Wangcan, ZHANG Peilin, ZHANG Yunqiang, et al.Feature extraction method of double-scale fractal dimension based on VMD and its application[J].Journal of Harbin Institute of Technology, 2019, 51(1): 133-139.
[3]KOSKO B .Fuzzy entropy and conditioning[J].Information Sciences, 1986, 40(2): 165-174.
[4]RICHMAN J S , LAKE D E , MOORMAN J R .Sample entropy[J].Methods in Enzymology, 2004, 384: 172-184.
[5]BANDT C , POMPE B .Permutation entropy: a natural complexity measure for time series[J].Physical Review Letters, 2002, 88(17): 1-5.
[6]ROSTAGHI M , AZAMI H .Dispersion entropy: a measure for time series analysis[J].IEEE Signal Processing Letters, 2016,23(5): 1-5.
[7]孟宗,王亚超,胡猛.基于改进LMD和IED-SampEn的齿轮故障特征提取方法[J].机械工程学报, 2016, 52(5): 169-176.
MENG Zong, WANG Yachao, HU Meng.Fault feature extraction method of gear based on improved local mean decomposition and instantaneous energy distribution-sample entropy[J].Journal of mechanical engineering, 2016, 52(5): 169-176.
[8]丁闯,张兵志,冯辅周,等.非线性量子信息熵及其在行星变速箱特征提取中应用[J].振动与冲击, 2018, 37(23): 120-125, 148.
DING Chuang, ZHANG Bingzhi, FENG Fuzhou, et al.Nonlinear quantum entropy and its application in feature extraction for planetary gearboxes[J].Journal of Vibration and Shock, 2018, 37(23): 120-125.
[9]YAN R , LIU Y , GAO R X .Permutation entropy: A nonlinear statistical measure for status characterization of rotary machines[J].Mechanical Systems and Signal Processing, 2012, 29: 474-484.
[10]李从志, 郑近德, 潘海洋,等.基于自适应多尺度散布熵的滚动轴承故障诊断方法[J].噪声与振动控制, 2018, 38(5): 179-185.
LI Congzhi , ZHENG Jinde , PAN Haiyang, et al.Fault diagnosis method of rolling bearings based on adaptive multi-scale dispersion entropy[J].Noise and Vibration Control, 2018, 38(5): 179-185.
[11]李从志,郑近德,潘海洋,等.基于精细复合多尺度散布熵与支持向量机的滚动轴承故障诊断方法[J].中国机械工程, 2019, 30(14): 1713-1719.
LI Congzhi, ZHENG Jinde, PAN Haiyang, et al.Fault Diagnosis Method of Rolling Bearings Based on Refined Composite Multiscale Dispersion Entropy and Support Vector Machine[J].China Mechanical Engineering, 2019, 30(14): 1713-1719.
[12]DRAGOMIRETSKIY K, ZOSSO D.Variational mode decomposition [J].IEEE Transactions on Signal Processing, 2014, 62(3): 531-544.
[13]杨大为, 冯辅周, 赵永东,等.VMD样本熵特征提取方法及其在行星变速箱故障诊断中的应用[J].振动与冲击, 2018,37(16): 198-205.
YANG Dawei, FENG Fuzhou, ZHAO Yongdong, et al.A VMD sample entropy feature extraction method and its application in planetary gearbox fault diagnosis[J].Journal of Vibration and Shock, 2018, 37(16): 198-205.
[14]王志坚,常雪,王俊元,等.排列熵优化改进变模态分解算法诊断齿轮箱故障[J].农业工程学报, 2018, 34(23): 59-66.
WANG Zhijian, CHANG Xue, WANG Junyuan, et al.Gearbox fault diagnosis based on permutation entropy optimized variational mode decomposition[J].Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(23): 59-66.
[15]孙灿飞,王友仁,沈勇,等.基于参数自适应变分模态分解的行星齿轮箱故障诊断[J].航空动力学报, 2018, 33(11): 2756-2765.
SUN Canfei, WANG Youren, SHEN Yong, et al.Fault diagnosis of planetary gearbox based on adaptive parameter variational mode decomposition[J].Journal of Aerospace Power, 2018, 33(11): 2756-2765.
[16]郑近德,潘海洋,杨树宝,等.广义变分模态分解方法及其在变工况齿轮故障诊断中的应用[J].振动工程学报, 2017, 30(3): 502-509.
ZHENG Jinde, PAN Haiyang, YANG Shubao, et al.Generalized variational mode decomposition and its applications to gearbox fault diagnosis under variable conditions[J].Journal of Vibration Engineering, 2017, 30(3): 502-509.
[17]郑小霞, 周国旺, 任浩翰.基于变分模态分解的风机滚动轴承早期故障诊断[J].轴承, 2016 (7): 48-53.
ZHENG Xiaoxia, ZHOU Guowang, REN Haohan, et al.incipient fault diagnosis for rolling bearings used in wind turbine based on variational mode decomposition[J].Bearing, 2016 (7): 48-53.
[18]丁世飞, 齐丙娟, 谭红艳.支持向量机理论与算法研究综述[J].电子科技大学学报, 2011, 40(1): 2-10.
DING Shifei, QI Bingjuan, TAN Hongyan.An overview on theory and algorithm of support vector machines[J].Journal of University of Electronic Science and Technology of China, 2011, 40(1): 2-10.
[19]曾柯,柏林.齿轮箱故障非线性特征测度及状态TWSVM辨识研究[J].振动与冲击, 2018, 37(15): 179-184.
ZENG Ke, BO Lin.Nonlinear characteristic measure of gearbox faults and their category identification with TWSVM[J].Journal of Vibration and Shock, 2018, 37(15): 179-184.
[20]杨望灿, 张培林, 王怀光,等.基于EEMD的多尺度模糊熵的齿轮故障诊断[J].振动与冲击, 2015, 34(14): 163-167.
YANG Wangcan, ZHANG Peilin, WANG Huaiguang, et al.Gear fault diagnosis based on multiscale fuzzy entropy of EEMD[J].Journal of Vibration and Shock, 2015, 34(14): 163-167.
[21]KENNEDY J.Particle swarm optimization[C]∥1995 IEEE International Conference on Neural Networks Perth.Washington, D.C.: IEEE,1995.
[22]陈保家,黄伟,李立军,等.最大重叠离散小波包变换边际谱特征在齿轮故障诊断中的应用[J].西安交通大学学报,2020(2): 1-9.
CHEN Baojia, HUANG Wei, LI Lijun, et al.An application of maximum overlap discrete wavelet packet transform marginal spectrum characteristics in gear fault diagnosis[J].Journal of Xi'an Jiaotong University, 2020(2): 1-9.
[23]戚晓利,王振亚,吴保林,等.基于ACMPE、ISSL-Isomap和GWO-SVM的行星齿轮箱故障诊断[J].航空动力学报,2019,34(4): 744-755.
QI Xiaoli, WANG Zhenya, WU Baolin, et al.Planetary gearbox fault diagnosis based on ACMPE,ISSL-Isomap and GWO-SVM[J].Journal of Aerospace Power, 2019, 34(4): 744-755.
[24]王保建,张小丽,傅杨奥骁,等.优化支持向量机及其在智能故障诊断中的应用[J].振动、测试与诊断,2017,37(3): 547-552.
WANG Baojian, ZHANG Xiaoli , FUYANG Aoxiao , et al.Optimization of support vector machine and its application in intelligent fault diagnosis[J].Journal of Vibration, Measurement & Diagnosis, 2017, 37(3): 547-552.
[25]张淑清,胡永涛,姜安琦,等.基于双树复小波和自适应权重和时间因子的粒子群优化支持向量机的轴承故障诊断[J].中国机械工程,2017,28(3): 327-333.
ZHANG Shuqing, HU Yongtao, JIANG Anqi, et al.Bearing fault diagnosis based on DTCWT and AWTFPSO-optimized SVM[J].China Mechanical Engineering, 2017,28(3): 327-333.
[26]岳应娟, 孙钢, 蔡艳平.基于变分模态分解近似熵和支持向量机的轴承故障诊断方法[J].轴承, 2016(12): 43-46.
YUE Yingjuan, SUN Gang, CAI Yanping.Bearing fault diagnosis method based on VMD-AE and SVM[J].Bearing, 2016(12): 43-46.
[27]杨大为, 赵永东, 冯辅周,等.基于参数优化变分模态分解和多尺度熵偏均值的行星变速箱故障特征提取[J].兵工学报, 2018, 39(9): 22-30.
YANG Dawei, ZHAO Yongdong, FENG Fuzhou, et al.Planetary gearbox fault feature extraction based on parameter optimized variational mode decomposition and partial mean of multi-scale entropy[J].Acta Armamentarii, 2018, 39(9): 22-30.

PDF(2511 KB)

440

Accesses

0

Citation

Detail

段落导航
相关文章

/