基于现场实测临海地区特大型冷却塔风振响应非平稳特性研究

王浩,柯世堂

振动与冲击 ›› 2020, Vol. 39 ›› Issue (10) : 206-214.

PDF(2955 KB)
PDF(2955 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (10) : 206-214.
论文

基于现场实测临海地区特大型冷却塔风振响应非平稳特性研究

  • 王浩,柯世堂
作者信息 +

Research on non-stationary characteristics of wind-induced vibration of extra-large cooling tower in coastal area based on field measurements

  • WANG Hao,KE Shitang
Author information +
文章历史 +

摘要

忽视特大型冷却塔风振响应的非平稳特征可能会导致对结构响应极值的估算偏差和风振作用特性的错误理解。为此,以某沿海地区特大型冷却塔(高190 m)为研究对象,通过现场实测获取了超高雷诺数和真实湍流条件下特大型冷却塔的风振响应信号;在对实测信号进行降噪滤波处理后进行了不同时距的信号非平稳识别,并分别基于平稳分析模型和非平稳分析模型对特大型冷却塔的响应统计值、峰值因子和极值响应进行对比研究。研究结果表明:临海地区特大型冷却塔风振响应表现出较强的非平稳性,部分响应信号的“大偏斜”或“高峰态”现象是由非平稳特征引起,采用非平稳模型可以更有效地判别信号的真实非高斯特征;此外,响应峰值因子普遍大于3.5,忽视非平稳特性将导致极值估计的缺陷,既无法提供足够的保证率,又降低了响应极值计算结果的经济性。

Abstract

For the extra-large cooling tower, it might cause estimation error of extreme response and misunderstanding on wind-induced effect if nonstationarity of wind-induced response is neglected.In this study, wind-induced response signals of an extra-large cooling tower (height=190 m) in coastal region under real Reynolds number and turbulent flow were acquired based field measurement.Nonstationarity of signals was identified under different time intervals after noise reduction.Statistics of wind-induced response, dynamic amplification factor and extreme response of the extra-large cooling tower were studied based on stationary model and non-stationary model.It is found that: wind-induced response of extra-large cooling tower in coastal area exhibit prominent non-Gaussian feature.Some large skewness phenomenon or high kurtosis phenomenon of probability density distribution of response are caused by effect of nonstationarity.The non-stationary analysis model can discriminate realistic non-Gaussian features of signals more effectively.Besides, the peak factors of extra-large cooling tower are generally higher than 3.5.Neglecting the non-stationary characteristics will lead to the defect of extremum estimation, which can neither provide sufficient guarantee rate,nor increase the economic efficiency of extreme response estimation.

关键词

特大型冷却塔 / 现场实测 / 非平稳特性 / 响应极值 / 峰值因子

Key words

extra-large cooling tower / filed measurement / non-stationary features / extreme response / peak factor

引用本文

导出引用
王浩,柯世堂. 基于现场实测临海地区特大型冷却塔风振响应非平稳特性研究[J]. 振动与冲击, 2020, 39(10): 206-214
WANG Hao,KE Shitang. Research on non-stationary characteristics of wind-induced vibration of extra-large cooling tower in coastal area based on field measurements[J]. Journal of Vibration and Shock, 2020, 39(10): 206-214

参考文献

[1]       P.C. Bamu, A. Zingoni. Damage, deterioration and the long-term structural performance of cooling-tower shells: A survey of developments over the past 50 years[J]. Engineering Structures, 2005, 27(12): 1794-1800.

[2]       王浩, 柯世堂. 基于风洞试验的四塔布置超大型冷却塔风致综合受力与稳定性能[J]. 东南大学学报, 2018, 48(2):330-336.

Wang Hao, Ke Shitang. Comprehensive performance of stress and stability of super large cooling tower under four-tower combination based on wind tunnel tests[J]. Journal of Southeast University( Natural Science Edition), 2018, 48(2):330-336.

[3]       沈国辉, 王宁博, 楼文娟,. 渡桥电厂冷却塔倒塌的塔型因素分析[J]. 工程力学, 2012, 29(8):123-128.

Sheng G.H., Wang N.B., Lou W.J, et al. Analysis of tower shape factor in the collapse of the ferrybridge cooling towers[J]. Engineering Mechanics, 2012, 29(8):123-128.

[4]       Pope, R. A. Structural deficiencies of natural draught cooling towers at uk power stations. part 1: failures at ferrybridge and fiddlers ferry[J]. Structures & Buildings, 1994, 104(1), 1-10.

[5]       Ke, S., Ge, Y., Zhao, L., Tamura, Y. A new methodology for analysis of equivalent static wind loads on super-large cooling towers[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2012), 111(111), 30-39.

[6]       Babu, G. R., Rajan, S. S., Harikrishna, P., Lakshmanan, N. and Arunachalam, S. (2013). “Experimental Determination of Wind-Induced Response on a Model of Natural Draught Cooling Tower.” Experimental Techniques, 37(37):35-46.

[7]       邹云峰, 牛华伟, 陈政清. 基于完全气动弹性模型的冷却塔风致响应风洞试验研究[J]. 建筑结构学报, 2013, 34(6):60-67.

Zou, Y., Niu, H., Chen, Z. Wind tunnel test on wind-induced response of cooling tower based on full aero-elastic model[J]. Journal of Building Structures, 2013, 34(6), 60-67.

[8]       Noh, H. C. (2006) “Nonlinear behavior and ultimate load bearing capacity of reinforced concrete natural draught cooling tower shell.” Engineering Structures, 28(3), 399-410.

[9]       Noorzaei, J., Naghshineh, A., Kadir, M. R. A., Thanoon W.A., Jaafar, M.S. (2006) “Nonlinear interactive analysis of cooling tower–foundation–soil interaction under unsymmetrical wind load.” Thin-Walled Structures, 44(9), 997-1005.

[10]   Sun T, Zhou L. (1983). “Wind pressure distribution around a ribless hyperbolic cooling tower”, Journal of Wind Engineering & Industrial Aerodynamics, 14(1), 181-192.

[11]   赵林, 刘晓鹏, 高玲,. 大型冷却塔表面脉动风压原型实测与分布准则[J]. 土木工程学报, 2017, 50(1):1-11.

Zhao Lin, Liu Xiaopeng, Gao Lin, et al. Full-scale measurement and distribution rules of surface fluctuating wind pressure of a large cooling tower[J]. China Civil Engineering Journal, 2017, 50(1):1-11.

[12]   Cheng X., Dong J., Peng Y, A Study of Nonstationary Wind Effects on a Full-Scale Large Cooling Tower Using Empirical Mode Decomposition[J]. Mathematical Problems in Engineering, 2017,(2017-5-11)., 2017.

[13]   Fu J., Wu J., Xu A. Full-scale measurements of wind effects on Guangzhou West Tower[J]. Engineering Structures, 2012, 35(1):120-139.

[14]   Wang H., Wu T., Tao T. Measurements and analysis of non-stationary wind characteristics at Sutong Bridge in Typhoon Damrey[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2016, 151:100-106.

[15]   Bendat J. S., Piersol A. G. (2010) “Random data: Analysis and measurement procedures. (Izmerenie i analiz slucainyh processov.) Übersetzung aus dem Englischen von G. V. Matusevskii und V. E. Prival’skii. Mit einem Vorwort von G. Ja. Mirskii.”. IEEE Transactions on Signal Processing, 58(7), 3938-3945.

[16]   Mallat, S., Zhong, S. (1992). “Characterization of Signals from Multiscale Edges.” IEEE Computer Society. 14(7):710-732.

[17]   Daubechies I. (1992) “Ten Lectures on Wavelets.” Computers in Physics, 1992, 6(3):1671-1671.

[18]   Davenport A G. (1967) “Gust loading factors.” Journal of the Structural Division, 93(ST3): 11-34.

[19]   Sadek, F. and Simiu, E. (2002) “Peak Non-Gaussian Wind Effects for Database-Assisted Low-Rise Building Design.” Journal of Engineering Mechanics, 128(5), 530-539.

[20]   GB50009-2012. 建筑结构荷载规范[S]. 北京: 中国建筑工业出版社. 2012.

GB50009-2012. Load code for the design of building structures[S]. Beijing: China Building Industry Press, 2012.


PDF(2955 KB)

Accesses

Citation

Detail

段落导航
相关文章

/