随从力作用下运动薄膜的非线性强迫振动特性研究

邵明月1,武吉梅1,王砚2,武秋敏1,庆佳娟1,卢瑶1

振动与冲击 ›› 2020, Vol. 39 ›› Issue (10) : 215-219.

PDF(1048 KB)
PDF(1048 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (10) : 215-219.
论文

随从力作用下运动薄膜的非线性强迫振动特性研究

  • 邵明月1,武吉梅1,王砚2,武秋敏1,庆佳娟1,卢瑶1
作者信息 +

Nonlinear forced vibration characteristics of membrane subjected to follower force

  • SHAO Mingyue1,WU Jimei1,WANG Yan2,WU Qiumin1,QING Jiajuan1,LU Yao1
Author information +
文章历史 +

摘要

研究随从力作用下运动印刷薄膜的非线性强迫振动特性。基于Von Karman薄板理论推导出轴向运动薄膜的非线性振动方程,应用Galerkin方法对振动偏微分方程组进行离散,利用4阶龙格-库塔法对微分方程进行求解,得出薄膜非线性振动的时程图、相图、Poincare 截面图和分岔图。分析了初始条件、随从力和长宽比对薄膜振动特性的影响。研究结果得出了薄膜稳定工作区间和发散失稳区间。

Abstract

The nonlinear forced vibration characteristics of moving printing membrane subjected to follower force were studied.Based on the Von Karman plate theory, the nonlinear vibration equations of the axially moving membrane were derived.The partial differential equations of the vibration were discretized by the Galerkin method, and the differential equations were solved by the fourth-order Runge-Kutta method.The time history diagram, phase-plane portraits, Poincare maps and bifurcation diagrams were obtained.The effects of initial conditions, follower force and aspect ratio on the vibration characteristics of the membrane were analyzed.According to the research results, the stable working range and the divergent instability region of the membrane were obtained.

关键词

非线性振动 / 随从力 / 运动薄膜 / 4阶龙格-库塔法

Key words

nonlinear vibration / follower force / moving membrane / fourth-order Runge-Kutta method

引用本文

导出引用
邵明月1,武吉梅1,王砚2,武秋敏1,庆佳娟1,卢瑶1. 随从力作用下运动薄膜的非线性强迫振动特性研究[J]. 振动与冲击, 2020, 39(10): 215-219
SHAO Mingyue1,WU Jimei1,WANG Yan2,WU Qiumin1,QING Jiajuan1,LU Yao1. Nonlinear forced vibration characteristics of membrane subjected to follower force[J]. Journal of Vibration and Shock, 2020, 39(10): 215-219

参考文献

[1]     杨峰, 王忠民, 韩玉强. 切向均布随从力作用下的矩形薄板稳定性分析[J]. 锻压技术, 2012, 37(4):49-51+56.

YANG Feng, WANG Zhongmin, HAN Yuqiang. Stability analysis on rectangular plate under uniformly distributed tangential follower force[J]. Forging & Stamping Technology, 2012, 37(4):49-51+56.

[2]       WANG Y, WANG Z M, ZU L. Stability of viscoelastic rectangular plate with a piezoelectric layer subjected to follower force[J]. Archive of Applied Mechanics, 2013, 83(4):495-507.

[3]     ZHOU Y F, WANG Z M. Exact Solutions for the stability of viscoelastic rectangular plate subjected to tangential follower force[J]. Archive of Applied Mechanics, 2014, 84(7):1081-1089.

[4]     TORKI M E, KAZEMI M T, REDDY J N, et al. Dynamic stability of functionally graded cantilever cylindrical shells under distributed axial follower forces[J]. Journal of Sound & Vibration, 2014, 333(3):801-817.

[5]     HIGUCHI K, DOWELL E H. Effect of structural damping on flutter of plates with a follower force[J]. Aiaa Journal, 2015, 30(30):820-825.

[6]     李清禄, 栾玮荻, 李世荣. 功能梯度材料圆板在随从力作用下的稳定性[J]. 玻璃钢/复合材料, 2016(10):5-10.

LI Qinglu, LUAN Weidi, LI Shirong. The Stability of FGM Circular Plates Subjected to Follower Force[J]. Fiber Reinforced Plastics/Composites, 2016(10):5-10.

[7]       ALIDOOST H, REZAEEPAZHAND J. Instability of a delaminated composite beam subjected to a concentrated follower force[J]. Thin-Walled Structures, 2017, 120:191-202.

[8]     赵凤群, 王忠民. 随从力作用下功能梯度矩形板的非线性振动[J]. 振动与冲击, 2011, 30(3):53-59.

ZHAO Fengqun, WANG Zhongmin. Nonlinear vibration of functionally graded thinck rectangular plates subjected to follower forces[J]. Journal of Vibration and shock, 2011, 30(3):53-59.

[9]     KUMAR A, SINGHA M K, TIWARI V. Nonlinear bending and vibration analyses of quadrilateral composite plates[J]. thin-walled structures, 2017, 113:170-180.

[10]  MARYNOWSKI K. Non-Linear Vibrations of an axially moving viscoelastic web with time-dependent tension[J]. Chaos Solitons & Fractals, 2004, 21:481-490.

[11]  MARYNOWSKI K. Non-Linear Vibrations of the axially moving paper web[J]. Journal of Theoretical & Applied Mechanics, 2008, 46:565-580.

[12]  SOARES R M, GONCALVES P B. Nonlinear vibrations and instabilities of a stretched hyperelastic annular membrane[J]. International Journal of Solids & Structures, 2012, 49:514-526.

[13]  LIU C, ZHENG Z, YANG X. Analytical and numerical studies on the nonlinear dynamic response of orthotropic membranes under impact load[J]. Earthquake Engineering & Engineering Vibration, 2016, 15:657-672.

[14]  LI D, ZHENG Z L, TIAN Y, et al. Stochastic nonlinear vibration and reliability of orthotropic membrane structure under impact load[J]. thin-walled structures, 2017, 119:247-255.

[15]  Banichuk N, Jeronen J, Neittaanmäki P, et al. Theoretical study on travelling web dynamics and instability under non-homogeneous tension[J]. International Journal of Mechanical Sciences, 2013, 66:132-140.

[16]  徐芝伦. 弹性力学() [M]. 第四版.北京:高等教育出版社, 2006. 142-144.


PDF(1048 KB)

Accesses

Citation

Detail

段落导航
相关文章

/