环境激励下基于相关函数的脉冲响应函数重构

张济淳,宋汉文

振动与冲击 ›› 2020, Vol. 39 ›› Issue (10) : 220-227.

PDF(1011 KB)
PDF(1011 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (10) : 220-227.
论文

环境激励下基于相关函数的脉冲响应函数重构

  • 张济淳,宋汉文
作者信息 +

Reconstruction of impulse response function based on correlation function under ambient excitation

  • ZHANG Jichun,SONG Hanwen
Author information +
文章历史 +

摘要

在白噪声激励下,结构响应的相关函数作为脉冲响应函数的近似可以进行模态参数辨识,但其物理意义始终缺乏明确解释;相比于脉冲响应函数,基于相关函数的辨识缺少了模态参与因子或者说质量信息,这也是工况模态分析(OMA)方法的主要缺陷。简要回顾了复模态下的自然激励技术原理,证明了白噪声激励下位移响应的相关函数等价于系统在特定初始条件下的自由响应,给出相应初始条件的计算方法;进一步提出了一种系统质量分布的辨识方法,并藉此重构得到系统脉冲响应函数。讨论了相关函数误差与信号时长及激励带宽之间的关系。通过仿真和试验验证了所得结论。

Abstract

The correlation functions (CFs) are treated as substitution of the impulse response functions (IRFs) for modal parameters identification under white noise excitation.However, a clear explanation of CFs is still absent.As is known, all the dynamic characteristics can be described with IRFs, however, the modal participation factors, or the mass information, cannot be identified using CFs, which is the main defect of operational modal analysis (OMA) as well.Under the complex mode assumption, the natural excitation technique (NExT) was reviewed.Then, the equivalence between CFs of displacements subjected to white noise excitation and the free responses under certain initial condition was derived.In addition, the initial condition for the free responses was provided.Furthermore, a mass distribution identification method was proposed and IRFs were reconstructed.The influence of time length and excitation bandwidth on the CF errors was discussed.Finally, a numerical simulation example and an experiment was designed to illustrate the effectiveness of the proposed method.

关键词

环境激励 / 相关函数(CF) / 自由响应 / 脉冲响应函数(IRF) / 质量分布辨识

Key words

ambient excitation / correlation function (CF) / free response / impulse response function (IRF) / mass distribution identification

引用本文

导出引用
张济淳,宋汉文. 环境激励下基于相关函数的脉冲响应函数重构[J]. 振动与冲击, 2020, 39(10): 220-227
ZHANG Jichun,SONG Hanwen. Reconstruction of impulse response function based on correlation function under ambient excitation[J]. Journal of Vibration and Shock, 2020, 39(10): 220-227

参考文献

[1]      Brincker R, Ventura C. Introduction to operational modal analysis[M]. New York: John Wiley and Sons, 2015.

[2]      Brincker R. Some elements of operational modal analysis[J]. Shock and Vibration, 2014, 2014(4):1-11.

[3]      Parloo E, Cauberghe B, Benedettini F, et al. Sensitivity-based operational mode shape normalisation: application to a bridge[J]. Mechanical Systems and Signal Processing, 2005, 19(1): 43-55.

[4]      Jaishi B, Kim H, Kim M K, et al. Finite element model updating of concrete-filled steel tubular arch bridge under operational condition using modal flexibility[J]. Mechanical Systems and Signal Processing, 2007, 21(6): 2406-2426.

[5]      Aenlle M L, Brincker R. Modal scaling in operational modal analysis using a finite element model[J]. International Journal of Mechanical Sciences, 2013, 76: 86-101.

[6]      Papoulis A, Pillai S U. Probability, random variables, and stochastic processes[M]. Fourth edition. New York: Mc Graw Hill, 2002.

[7]      James G H. Extraction of modal parameters from an operating HAWT using the Natural Excitation Technique (NExT)[A]. Proceedings of the 13th Energy-Sources Technology Conference and Exhibition (ETCE) on Wind Energy[C]. New Orleans, Louisiana, USA: 1994: 23-26.

[8]      James G H, Carne T G, Lauffer J P. The natural excitation technique (NExT) for modal parameter extraction from operating structures[J]. Modal Analysis - the International Journal of Analytical and Experimental Modal Analysis. 1995, 4(10): 260-277.

[9]      James G H, Carne T G, Edmunds R S. Stars missile- modal analysis of first-flight data using the natural excitation technique, NExT[J]. Proceedings of SPIE - The International Society for Optical Engineering, 1993, 154(4):749–757.

[10]  James G. Development of operational modal analysis techniques for launch data[J]. Advances in the Astronautical Sciences, 2013, 147.

[11]  于亮亮, 宋汉文. 激励中含有谐波成分时的工况模态参数辨识[J]. 振动工程学报, 2018, 31(1): 74-81.

Yu L L, Song H W. Operational modal analysis in the presence of harmonic excitation[J]. Journal of Vibration Engineering, 2018, 31(1): 74-81.

[12]   于亮亮, 宋汉文. 环境激励下脉冲响应函数与相关函数的关系[J]. 噪声与振动控制, 2017, 37(3): 14-19.

Yu L L, Song H W. Discussion on the relation between correlation functions and impulse response functions under ambient excitation[J]. Noise and Vibration Control, 2017, 37(3): 14-19.

[13]  秦飞,宋汉文,王文亮. 基于现代谱估计理论的工况模态分析[J]. 振动与冲击, 2002(4): 74-79.

Qin F, Song H W, Wang W L. Operational modal identification based on modern spectral estimation[J]. Journal of vibration and shock, 2002(4): 74-79.

[14]   陈伟, 宋汉文. 非自伴随动力学系统的工况模态分析[J]. 振动工程学报, 2018(5).

Chen W, Song H W. Operational modal analysis of non-self-adjust dynamic system.[J]. Journal of Vibration Engineering, 2018(5).

[15]   Zhang Y, Song H W. Non-overlapped random decrement technique for parameter identification in operational modal analysis [J]. Journal of Sound and Vibration, 2016, 366: 528-543.

[16]   Caicedo J M. Practical guidelines for the natural excitation technique(next) and the eigensystem realization algorithm (era) for modal identification using ambient vibration[J]. Experimental Techniques, 2011, 35(4):52-58.

[17]  James G, Mo K, Cao T, et al. Operational analysis in the launch environment[J]. 2012:249-264.

[18]  James G H. Modal parameter estimation from space shuttle flight data[J]. 2003.

[19]  傅志方. 振动模态分析与参数辨识[M]. 北京: 机械工业出版社, 1990.

Fu Z F. Modal analysis and parameter identification[M]. Beijing: China Machine Press, 1990.

[20]  朱华, 黄辉宁, 李永庆, . 随机信号分析. 北京: 北京理工大学出版社, 1990.

Zhu H, Huang H N, Li Y Q, et al. Random signal analysis. Beijing: Beijing institute of technology press, 1990.


PDF(1011 KB)

570

Accesses

0

Citation

Detail

段落导航
相关文章

/