基于介电弹性体的振荡水柱波浪能发电模拟分析

杜小振,朱尚,郭悦,赵岩,康辉

振动与冲击 ›› 2020, Vol. 39 ›› Issue (10) : 256-260.

PDF(1132 KB)
PDF(1132 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (10) : 256-260.
论文

基于介电弹性体的振荡水柱波浪能发电模拟分析

  • 杜小振,朱尚,郭悦,赵岩,康辉
作者信息 +

Simulation analysis of wave power generation of oscillating water column based on dielectric elastomer

  • DU Xiaozhen, ZHU Shang, GUO Yue, ZHAO Yan, KANG Hui
Author information +
文章历史 +

摘要

振荡水柱式(OWC)波浪能采集装置结构简单、成本低;介电弹性体作为发电机可以收集人体能、海洋能、风能等,能量密度高、耐冲击、环境适应性强,利用OWC驱动介电弹性体形变发电应用前景好。在FLUENT中建立二维数值水槽OWC模型分析气室内波高和压强的变化规律;在Abaqus有限元分析系统中将波浪进入气室的模拟压强施加到介电弹性体薄膜模型产生形变,采用Simulink计算介电弹性体发电量。结果表明:介电弹性体发电量随着薄膜面积、气室压强增加而增大;随着薄膜厚度、预拉伸强度增大而减小,并且这两者对发电量影响较大。

Abstract

The oscillating water column (OWC) wave energy acquisition device has the advantages of simple structure and low cost.And dielectric elastomer (DE) membranes have the capabilities both as actuators and generators.For generator applications, it demonstrate great potential for harvesting energy from human kinetic, ocean wave, wind and hydro power harvester, and so on.The dielectric elastomer generator boasts high energy density, strong impact resistance and excellent environmental adaptability.The deformation of DE generator prompted by OWC enjoys a good prospect.The two-dimensional numerical water flume OWC model was established with FLUENT to analyze the variation of wave height and pressure in gas chamber.In the ABAQUS finite element analysis system, the DE membrane deformed with the pressure from gas chamber.The theoretical calculation of generating capacity of dielectric elastomer was finished with the Simulink software.And the results show that the electric power rises with the increase of membrane area and gas chamber pressure.On the other hand, it decreases with the increase of membrane thickness and pretension strength and both of them influence the generation capacity significantly.The analysis process provides theoretical and technical support for dielectric elastomer power generation driven by wave energy.

关键词

波浪能 / 振荡水柱(OWC) / 介电弹性体(DE) / 发电 / 仿真分析

Key words

wave energy / oscillation water column(OWC) / dielectric elastomer(DE) / power generation / simulation analysis

引用本文

导出引用
杜小振,朱尚,郭悦,赵岩,康辉. 基于介电弹性体的振荡水柱波浪能发电模拟分析[J]. 振动与冲击, 2020, 39(10): 256-260
DU Xiaozhen, ZHU Shang, GUO Yue, ZHAO Yan, KANG Hui. Simulation analysis of wave power generation of oscillating water column based on dielectric elastomer[J]. Journal of Vibration and Shock, 2020, 39(10): 256-260

参考文献

[1]       Boccotti P.Caisson breakwaters embodying an OWC with a small opening—Part ITheory[J].Ocean Engineering,2007, 34(5)806819.

[2]       , 王永学, 王国玉. 带收缩水道的沉箱防波堤兼OWC装置结构形式的研究[J].水运工程, 2013(8)5256.

Qin Hui, Wang Yongxue, Wang Guoyu. On caisson breakwater with contracted channel and OWC modeling[J].Port & Waterway Engineering, 2013 (8)52—56.

[3]       Luo Y, Nader J R, Cooper P, et al.Nonlinear 2D analysis of the efficiency of fixed Oscillating Water Column wave energy converters[J].Renewable Energy, 2014, 64(2)255265.

[4]       Bouali B, Larbi S. Contribution to the Geometry Optimization of an Oscillating Water Column Wave Energy Converter[J].Energy Procedia, 2013, 36(3)565573.

[5]       杜小振, 朱文斗, , . 离岸式振荡水柱气室参数CFD优化设计[J].海洋技术学报, 2016, 35(5)6165.

Du Xiaozhen, Zhu Wendou, Zhang Yan, et al. CFD Analysis and Optimization of Air Chamber Parameters for Offshore Oscillating Water Column Design[J].Journal of Ocean Technology,2016, 35(5)61—65.

[6]       袁同燕. 介电型EAP发电特性研究[D]. 南京: 南京航空航天大学, 2012.

[7]       朱黎辉. 电活性介电弹性体膜型材料电致应变特性的研究[D]. 长春: 吉林大学, 2011.

[8]       金丽丽. 介电弹性体发电机机电转换效率研究[D]. 兰州: 兰州交通大学, 2016.

[9]       , 陈东旺, 王树杰, . 涡激振动潮流能转换装置获能实验研究[J]. 中国海洋大学学报(自然科学版)自然科学版, 2015, 45(10) 114120.

Yuan Peng, Chen Dongwang, Wang Shujie, et al. Experimental study on Vortex-induced Vibration Tidal Current Energy Conversion[J]. Periodical of Ocean University of China (Natural Science Edition), Natural Science Edition, 2015, 45(10) 114—120.

[10]    陈东旺. 涡激振动潮流能转换装置中的介电弹性体发电技术研究[D]. 青岛: 中国海洋大学, 2015.

[11]    Maas J, Graf C. Dielectric elastomers for hydro power harvesting[J]. Smart Materials & Structures, 2012, 21(6)371378.

[12]    , , 陈昱松, . 数值波浪水槽构建与二阶Stokes波仿真[J]. 系统仿真学报, 2012, 24(1) 227231.

Huang Hua, Deng Bing, Chen Yusong, et al. Building of Numerical Wave Tank and 2nd Stokes Wave Simulation [J]. Journal of System Simulation, 2012, 24(1) 227—231.

[13]    朱文斗. 离岸式振荡水柱波浪能采集气室仿真分析与优化[D]. 青岛:山东科技大学, 2017.

[14]    Ogden R W. Large Deformation Isotropic Elasticity - On the Correlation of Theory and Experiment for Incompressible Rubberlike Solids[J]. Proceedings of the Royal Society of London, 1972, 326(1567) 565—584.

[15]    朱银龙. 介电型EAP换能器机电耦合特性研究[D]. 南京:南京航空航天大学, 2012.

[16]    周远翔, 王健一, , . 厚度对硅橡胶材料空间电荷与击穿特性的影响[C]. 中国电机工程学会高电压专委会学术年会. 2007.

Zhou Yuanxiang, Wang Jianyi, Nie Qiong, et al. Effect of thickness on space charge and breakdown characteristics of silicone rubber materials[C]. China Electrical Engineering Society High Voltage Special Committee Academic Annual Meeting. 2007

PDF(1132 KB)

Accesses

Citation

Detail

段落导航
相关文章

/