厚壁金属管挤压变形缓冲制动响应特性研究

毕世华1,何泽鹏1,傅德彬1,宋斌2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (10) : 58-64.

PDF(2716 KB)
PDF(2716 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (10) : 58-64.
论文

厚壁金属管挤压变形缓冲制动响应特性研究

  • 毕世华1,何泽鹏1,傅德彬1,宋斌2
作者信息 +

Study on response characteristics of cushioning braking for extrusion deformation of thick-walled metal tube

  • BI Shihua1,HE Zepeng1,FU Debin1,SONG Bin2
Author information +
文章历史 +

摘要

金属管挤压变形是高效缓冲制动的重要形式,但目前对不同结构形式在动态冲击条件下的响应特性缺少系统的认识;以厚壁金属管为对象,对其挤压变形缓冲制动响应进行数值研究。参照试验状态和结果建立厚壁金属管缓冲制动装置的有限元分析计算模型,进行准静态仿真模拟分析并校核;在此基础上利用有限元法和显示动力学算法,对厚壁金属管缓冲制动响应特性以及影响缓冲力的主要因素进行研究和分析。结果表明:①厚壁金属管缓冲制动结构具有尺寸小、冲击载荷平稳、变形能力强的特点;②利用此计算模型能够清晰地表征厚壁金属管缓冲制动装置的动态响应;③影响缓冲力大小的主要结构因素是缓冲筒下部内孔直径、上部内孔直径以及外部直径,缓冲筒上下内径比 D 1应控制在0.7~0.8, D 2应控制在1.8~2.0,当比值越小时,冲击杆会出现反冲现象,当比值越大时,冲击杆受到较大的冲击力,缓冲筒的惯性制动段的制动也有较大波动的影响。针对工程应用中不同的缓冲制动需求,可以通过设置合理的缓冲筒内外廓直径参数来获得有效的制动载荷。可为相关研究和工程应用提供参考。

Abstract

The extrusion deformation of metal tube is an important form of high efficient cushioning braking.At present, the response characteristics of different structural forms under dynamic impact conditions is still lack of systematic understanding.Based on the thick-walled metal tube, the numerical study was carried out on the response of the compression deformation buffering braking.Firstly, with reference to the test state and results, the finite element analysis and calculation model of the thick-walled metal tube buffer braking device was established, and the quasi-static simulation analysis was carried out and checked, and then on this basis, the finite element method and display dynamics algorithm were used to study and analyze the cushioning braking response characteristics of thick-walled metal tube and the main factors affecting the buffer force.The results show that: ① the thick-walled metal tube buffer braking structure has the characteristics of small size, stable impact load and strong deformation capacity; ② the dynamic response of the thick-walled metal tube buffer braking device can be clearly characterized by this calculation model; ③the main structural factors affecting the buffer force are the lower inner hole diameter, the upper inner hole diameter and the external diameter of the buffer tube.The ratio of the inner diameter of the buffer tube to that of the upper part D 1 should be controlled between 0.7 and 0.8, and the ratio D 2 should be controlled between 1.8 and 2.0.When the ratio is smaller, the impact rod will recoil.When the ratio is larger, the impact rod will be subjected to greater impact force.The braking of the inertia braking section of the buffer cylinder also has a large fluctuation influence.According to the different buffer braking requirements in different engineering applications, the effective braking load can be obtained by setting reasonable parameters of the inner and outer diameter of the buffer tube.It can provide reference for related research and engineering application.

关键词

缓冲制动 / 塑性变形 / 有限元分析 / 数值计算 / 动态响应 / 冲击载荷

Key words

buffer braking / plastic deformation / finite element analysis / numerical calculation / dynamic response / impact load

引用本文

导出引用
毕世华1,何泽鹏1,傅德彬1,宋斌2. 厚壁金属管挤压变形缓冲制动响应特性研究[J]. 振动与冲击, 2020, 39(10): 58-64
BI Shihua1,HE Zepeng1,FU Debin1,SONG Bin2. Study on response characteristics of cushioning braking for extrusion deformation of thick-walled metal tube[J]. Journal of Vibration and Shock, 2020, 39(10): 58-64

参考文献

[1] 侯淑娟. 薄壁构件的抗撞性优化设计[D]. 湖南湖南大学2007.

Hou Shu-juan. Optimization Design of the Thin-walled Components with Crashworthiness Criterion[D]. Hunan, Hunan University, 2007.

[2] 何斌徐锦杨建. g值加速度存储测试装置设计及实现[J]. 仪表技术与传感器2011(11)28-33.

He Bin, Xu Jin, Yang Jian. Design of Stored-test Device for High g Acceleration Measurement[J]. Instrument Technology and Sensors, 2011, (11): 28-33.

[3] 倪建华叶永亮羊军. 管梁缓冲吸能元件特性试验研究[J].设计研究2013(08)20-27.

NI Jian-hua, YE Yong-liang, YANG Jun. Experimental study on characteristics of tube beam buffer energy absorbing element[J]. Design Research, 2013, (08): 20-27.

[4] Shinya Hayashi. Prediction of Failure Behaviors in Polymers Under Multiaxial Stress State [A]. 12th International LS-DYNA® Users Conference: Constitutive Modeling(3)[C]. AichiJSOL Corporation, 2012, 1-12.

[5] Soong T T, Dargush G F. Passive Energy Dissipation Systems in Structural Engineering[M]. WileyNew York, 1997.

[6] Lavan O, Levy R. Optimal design of supplemental viscous dampers for irregular shear-frames in the presence of yiled[J]. Earthquake Engineering&Structural Dynamics, 2005, 34(8)889-907.

[7] Thornton P H, Magee C L. The Interplay of Geometric and Materials Variables in Energy Absorption[J]. Journal of Engineering Materials & Technology , 1977, 99(2)114-120.

[8] Gibson L J, Ashby M F. Cellular Solid: Structure And Properties, 2nd ed[M]. Cambridge University Press, 1997.

[9] Doengi F, Burnage S T, Cottard H. Lander Shock-Alleviation Techniques. ESA Bulletin 93, 1998, 2.

[10] 罗昌杰. 腿式着陆缓冲器的理论模型及优化设计研究[D].哈尔滨:哈尔滨工业大学,2009.

Luo Chang-jie. Research on Theoretical Model and Optimization Design for Energy Absorbers of Legged-type Lander[D]. Harbin: Harbin Institute of Technology, 2009.

[11] 罗昌杰刘荣强邓宗全等. 泡沫铝填充薄壁金属管塑性变形缓冲器吸能特性的试验研究[J]. 振动与冲击200928(10)26-30.

LUO Chang-jie, LIU Rong-qiang, DENG Zong-quan et al. Experimental study on a plastic deformation energy absorber filled with aluminum foam in a thin-walled metal tube[J]. Journal of Vibration and Shock, 2009, 28(10): 26-30.

[12] 罗昌杰刘荣强邓宗全等. 薄壁金属管塑性变形缓冲器吸能特性的试验研究[J]. 振动与冲击201029(4)101-106.

LUO Chang-jie, LIU Rong-qiang, DENG Zong-quan et al. Experimental investigations of an energy absorber based on thin-walled metal tube’s plastic deformation[J]. Journal of Vibration and Shock, 2010, 29(4): 101-106.

[13] 曹立波丁海建李克等. 可伸缩式汽车碰撞缓冲吸能装置的试验与仿真研究[J]. 中国机械工程200920(17)2137~2141.

CAO Li-bo, DING Hai-jian, LI Ke et al. Computational Simulation and Test Study of an Extendable and Retractable Automobile Crash Energy Absorbing Device[J]. China Mechanical Engineering, 2009, 20(17): 2137~2141.

[14] 郝志勇刘亚强潘一山. 矿用缓冲吸能装置及其填充材料试验研究[J]. 采矿与安全工程学报201835(03): 620-628.

HAO Zhi-yong, LIU Ya-qiang, PAN Yishan. Experimental Study on Filling Material of Mining Buffer Energy Absorption Device [J]. Journal of Mining & Safety Engineering201835(03): 620-628.

[15] 吴宏宇王春洁丁建中等. 新型着陆器单腿动力学仿真模型碰撞参数修正[J]. 振动与冲击201837(5): 50-55.

WU Hong-yu, WANG Chun-jie, DING Jian-zhong et al. Collision parameters updating for single-leg dynamic simulation model of a novel lander [J]. Journal of Vibration and Shock201837(5): 50-55.

[16] 邹广平唱忠良王丹等. 冲击拉伸实验装置的研制及其试验研究[J]. 实验力学201227(05): 558-564.

ZOU Guang-ping, CHANG Zhong-liang, WANG Dan et al. The Development and Testing Research of Impact Tensile Testing Apparatus [J]. Journal of Experimental Mechanics, 201227(05): 558-564.

[17] 徐磊贾大伟,俞麒峰. 薄壁金属管吸能器的吸能特性分析[J].计算机辅助工程201322(S2)1-5.

XU Lei, JIA Dawei,YU Qifeng. Analysis on energy absorption characteristics of thin-walled metal tube[J]. Computer Aided Engineering, 2013, 22(S2)1-5.

[18] 褚桂柏张熇. 月球探测器技术[M]. 北京中国科学技术出版社2015.

Geng Gui-baiZhang Wei. Lunar Detector Technology [M]. Beijing: China Science and Technology Press.

 


PDF(2716 KB)

Accesses

Citation

Detail

段落导航
相关文章

/