
基于失衡样本特性过采样算法与SVM的滚动轴承故障诊断
Rolling bearing fault diagnosis based on imbalanced sample characteristics oversampling algorithm and SVM
改进凝聚层次聚类 / 样本特性 / K-信息量近邻域(KINN)过采样 / 支持向量机(SVM) / 滚动轴承故障诊断 {{custom_keyword}} /
improved agglomerative hierarchical clustering / sample characteristics / K-information nearneighbor(KINN) oversampling algorithm / support vector machine(SVM) / rolling bearing fault diagnosis {{custom_keyword}} /
[1] 刘永强, 李翠省, 廖英英. 基于 EEMD 和自相关函数峰态系数的轴承故障诊断方法[J]. 振动与冲击, 2017, 36 (2):111-116.
[2] Liu Yongqiang,Li Cuixing,Liao Yingying . Fault diagnosis method for rolling bearings based on EEMD and autocorrelation function kurtosis[J].Journal of Vibration and Shock , 2017, 36(2):111-116.
[3] 陈超, 沈飞, 严如强. 改进LSSVM迁移学习方法的轴承故障诊断[J]. 仪器仪表学报, 2017, 38(1):33-40.
Chen Chao,Shen Fei,Yan Ru qiang.Enhanced least squares support vector machine-based transfer learning strategy for bearing fault diagnosis[J].Chinese Journal of Scientific Instrument, 2017,38(1):33-40.
[4] Duan L,Xie M, Bai T, et al. A new support vector data descrip-tion method for machinery fault diagnosis with unbalanced datasets[J]. Expert Systems with Applications, 2016, 64:239-246.
[5] 姚德臣, 杨建伟, 程晓卿,等. 基于多尺度本征模态排列熵和SA-SVM的轴承故障诊断研究[J]. 机械工程学报, 2018, 54(9):168-176.
Yao Dechen, Yang Jianwei, Cheng Xiaoqing, et al. Railway Rolling Bearing Fault Diagnosis Based on Muti-scale IMF Permutation Entropy and SA-SVM Classifier[J]. Journal of Mechanical Engineering, 2018,54(9):168-176.
[6] Hulse J V, Khoshgoftaar T M, Napolitano A. Experimental perspectives on learning from imbalanced data[C]// Machine Learning, Proceedings of the Twenty-Fourth International Conference. DBLP, 2007:935-942.
[7] Wang X. An Innovative SVM for Wheat Seed Quality Estimation[J]. Journal of Information & Computational Science, 2015, 12(1):223-233.
[8] Veropoulos K, Campbell C, Cristianini N. Controlling the Sen- sitivity of Support Vector Machines[C]// Proceedings of the International Joint Conference on Artificial Intelligence.Stockholm:IJCAI,1999:55-60.
[9] Lin C F, Wang S D. Fuzzy support vector machines[J]. IEEE Transactions on Neural Networks,2002,13(2):464- 471.
[10] Batuwita R, Palade V. FSVM-CIL: Fuzzy Support Vector Ma- chines for Class Imbalance Learning[J]. IEEE Transactions on Fuzzy Systems,2010,18(3):558-571.
[11] 鞠哲, 曹隽喆, 顾宏. 用于不平衡数据分类的模糊支持向量机算法[J]. 大连理工大学学报, 2016, 56(5):525-531.
Ju Zhe,Cao Juanzhe,Gu Hong.A fuzzy Support vector machine algorithm for unbalanced data classification[J]. Journal of Dali- an University of Technology,2016,56 (5):525 -531.
[12] Batuwita R, Palade V. Efficient resampling methods for train- ing support vector machines with imbalanced datasets[C] // Int- ernational Joint Conference on Neural Networks. IEEE, 2010: 1-8.
[13] Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Inte- lligence Research, 2002, 16(1):321-357.
[14] Han H, Wang W Y, Mao B H. Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learnig[J]. Lecture Notes in Co mputer Science, 2005, 3644 (5) :878-887.
[15] 陶新民,张冬雪,郝思媛,等.基于谱聚类下采样失衡数据下SVM故障检测[J].振动与冲击, 2013, 32(16):30-36.
Tao Xinmin,Zhang Dongxue,Hao Siyuan,et all.Fault detection based on spectral clustering combined with under-sampling SVM under unbalanced datasets[J].Journa l of Vibration and Shock , 2013, 32(16):30-36.
[16] Wang Q, Luo Z, Huang J, et al. A Novel Ensemble Method for Imbalanced Data Learning: Bagging of Extrapolation-SMOTE SVM[J].Computational intelligence and neuroscience, 2017, 2017(3):1827016,11pages,https://doi.org/10.1155/2017/1827016.
[17] Ma L, & Fan S. CURE-SMOTE algorithm and hybrid algorithm forfeature selection and parameter optimization based on random forests[J].BMC Bioinformatics, 2017,18(1), 169. https: //doi .org /10.1186/s12859-017-1578-z.
[18] Cortes C, Vapnik V. Support vector networks[J]. Machine Learning, 1995, 20(3): 273-297.
[19] Yu H , Mu C , Sun C , et al. Support vector machine-based optimized decision threshold adjustment strategy for classifying imbalanced data[J]. Knowledge-Based Systems, 2015, 76(1):67-78.
[20] Barua S , Islam M M , Yao X , et al. MWMOTE--Majority Weighted Minority Oversampling Technique for Imbalanced Data Set Learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(2):405-425.
[21] 朱坚,杨博,王永健,唐晓婕,李宏光.一种新型的基于莱文斯坦距离层次聚类的时序操作优化方法[J/OL].化工学报:1-10[2018-12-09].http://kns.cnki.net/kcms/detail/11.1946.TQ.20181204.1726.134.html.
Zhu J,Yang B,Wang Y J,Li X G.A New Operation Optimization Method with Time Series Based on Levenshtein Distance Hierarchical Clustering [J/OL].Journal of Chemical Industry and Engineering(China):1-10[2018-12-09].http://kns.cnki.net/kcms/detail/11.1 946 .TQ .20181204.1726.134.html.
[22] Zhou S , Xu Z , Liu F . Method for Determining the Optimal Number of Clusters Based on Agglomerative Hierarchical Clustering[J]. IEEE Transactions on Neural Networks & Learning Systems, 2017, 28(12):3007-3017.
[23] 黄海松,魏建安,康佩栋.基于不平衡数据样本特性的新型过采样SVM分类算法[J].控制与决策,2018(09):1549-1558.
Huang Haisong,Wei Jianan,Kang Peidong.A New Over-sampling SVM Classification Algorithm Based on Unbalanced Data Sample Characteristics[J]Control and Decision,2018 (09) :15 49-1558.
[24] 陶新民,张冬雪,郝思媛,等.基于谱聚类下采样失衡数据下SVM故障检测[J].振动与冲击, 2013, 32(16):30-36.
Tao Xinmin,Zhang Dongxue,Hao Siyuan,et all.Fault detection based on spectral clustering combined with under-sampling SVM under unbalanced datasets[J].Journa l of Vibration and Shock , 2013, 32(16):30-36.
[25] Mao W, He L, Yan Y, et al. Online sequential prediction of bearings imbalanced fault diagnosis by extreme learning machine[J]. Mechanical Systems & Signal Processing, 2017, 83:450-473.
[26] Geng X, Zhan D C, Zhou Z H. Supervised nonlinear dimensionality reduction for visualization and classification[J]. IEEE Transactions on Systems Man & Cybernetics Part B Cybernetics A Publication of the IEEE Systems Man & Cybernetics Society, 2005, 3 5(6):1098:1107.
[27] Torres M E, Colominas M A, Schlotthauer G, et al. A complete ensemble empirical mode decomposition with adaptive noise [C] // IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2011:4144-4147.
[28] Lei Y, Liu Z, Ouazri J, et al. A fault diagnosis method of rolling element bearings based on CEEMDAN[J]. ARCHIVE Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science 1989-1996 (vols 203-210), 2015, 231(10):1-12.
[29] Colominas M A, Schlotthauer G, Torres M E. Improved comp- lete ensemble EMD: A suitable tool for biomedical signal processing[J]. Biomedical Signal Processing & Control, 2014, 14(1):19-29.
[30] 蒋永华, 程光明, 阚君武,等. 基于NGA优化SVM的滚动轴承故障诊断[J]. 仪器仪表学报, 2013, 34(12):2684 -2689.
Jiang Yonghua ,Chen Guangmin,Kan Junwu,et all.Rolling bear- ing fault diagnosis based on NGA optimized SVM[J]. Chinese Journal of Scientific Instrument, 2013, 34(12):2684- 2689.
[31] Bearing Data Center Website.Case Western Reserve Unive- rsity[EB/OL].[2018-07-19].http:/www.eecs.Cwru.edu/laboratory/ bearing.
[32] 段礼祥, 郭晗, 王金江. 数据集不均衡下的设备故障程度识别方法研究[J]. 振动与冲击, 2016, 35(20):178-182.
Duan Lixiang,Guo Han,Wang Jinjiang.A mechanical fault severity identification method under unbalanced datasets [J].Journal of Vibration and Shock ,2016,35 (20):178-182
/
〈 |
|
〉 |