基于幂次趋近律滑模控制的H桥逆变器复杂动力学行为研究

江伟,吴荣华

振动与冲击 ›› 2020, Vol. 39 ›› Issue (10) : 7-14.

PDF(1799 KB)
PDF(1799 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (10) : 7-14.
论文

基于幂次趋近律滑模控制的H桥逆变器复杂动力学行为研究

  • 江伟,吴荣华
作者信息 +

Research on complex dynamic behavior of H-bridge inverter based on power rate reaching law sliding mode control

  • JIANG Wei,WU Ronghua
Author information +
文章历史 +

摘要

基于幂次趋近律的滑模控制具有响应速度快、对噪声干扰和参数摄动不敏感等特点,在H桥逆变器的控制中得到广泛应用。然而,滑模控制的H桥逆变器是一种非线性控制的时变非线性系统,必然表现出强的复杂的动力学行为,控制参数和电路参数的选取将影响系统工作的稳定性。分析该系统的工作过程,运用频闪映射法建立系统的一阶离散模型;采用折叠图和频谱图的方法分析了系统在不同控制参数 α和k 下的复杂动力学行为,发现一种多种倍数的倍周期状态同时存在的特殊分岔现象,并通过分析输出波形峰值和谷值附近采样的分岔图进行了一一验证。运用快变稳定性定理对系统工作的稳定性进行进一步的分析,研究结果为系统控制参数的合理选择提供重要依据。研究发现输入电压 E、负载电感L与电阻R 等外部电路参数的选取对系统的稳定性能有重要的影响。因此,研究结论对基于幂次趋近律滑模控制的H桥逆变器的设计和调试提供了可靠的参考,具有一定的理论意义和实际的工程价值。

Abstract

Sliding mode control based on power rate reaching law is widely used in H-bridge inverter because of its fast response and insensitivity to noise disturbance and parameter perturbation.However, the H-bridge inverter with sliding mode control is a time-varying nonlinear system with nonlinear control, which is bound to show strong and complex dynamic behavior.The selection of control parameters and circuit parameters will affect the stability of the system.Firstly, the working process of the system was analyzed, and the first-order discrete model of the system was established by stroboscopic mapping method.Secondly, the complex dynamic behavior of the system under different control parameters α and k was analyzed by means of folding diagram and spectrum diagram.A special bifurcation phenomenon of multiple period-doubling state was found, which was verified by analyzing the bifurcation diagrams sampled near the peak and valley values of the output waveform.Thirdly, the stability of the system was further analyzed by using the fast-varying stability theorem, and the research results provide an important basis for the reasonable selection of system control parameters.Finally, it was found that the selection of external circuit parameters such as input voltage E , load inductance L and resistance R has an important impact on the stability of the system.Therefore, the research conclusion provides a reliable reference for the design and debugging of H-bridge inverter based on power rate reaching law sliding mode control, and has certain theoretical significance and practical engineering value.

关键词

H桥逆变器 / 滑模控制 / 幂次趋近律 / 动力学行为

Key words

H-bridge inverter / sliding mode control / power rate reaching law / dynamic behavior

引用本文

导出引用
江伟,吴荣华. 基于幂次趋近律滑模控制的H桥逆变器复杂动力学行为研究[J]. 振动与冲击, 2020, 39(10): 7-14
JIANG Wei,WU Ronghua. Research on complex dynamic behavior of H-bridge inverter based on power rate reaching law sliding mode control[J]. Journal of Vibration and Shock, 2020, 39(10): 7-14

参考文献

[1]     施烨, 吴在军, 窦晓波, . 三相全桥逆变器分岔特性研究[J]. 中国电机工程学报, 2016, 36(19): 5334-5349+5416.

Shi Wei, Wu Zaijun, Dou Xiaobo, et al. Study on Bifurcation Characteristics of Three-Phase Full-Bridge Inverter[J]. Proceedings of the CSEE, 2016, 36(19): 5334-5349+5416.

[2]     刘洪臣, 苏振霞. 双降压式全桥逆变器非线性现象的研究[J]. 物理学报, 2014, 63(01): 67-75.

Liu Hongchen, Su Zhenxia. Study on nonlinear phenomena of double-buck full-bridge inverters[J].Acta Physica Sinica, 2014, 63(01): 67-75.

[3]     周林, 龙崦平, 郭珂, . 基于系数线性化模型的逆变器分岔与混沌现象研究[J]. 电力自动化设备, 2013, 33(07): 100-104.

Zhou Lin, Long Yiping, Guo Wei, et al. Research on Bifurcation and Chaos of Inverter Based on Coefficient Linearization Model[J]. Electric Power Automation Equipment, 2013, 33(07): 100-104.

[4]     Ma W, Wang M, Liu S, et al. Stabilizing the Average-Current-Mode-Controlled Boost PFC Converter via Washout-Filter-Aided Method[J]. IEEE Transactions on Circuits & Systems II Express Briefs, 2011, 58(9):595-599.

[5]     Robert B, Robert C. Border collision bifurcations in a one-dimensional piecewise smooth map for a PWM current-programmed H-bridge inverter[J]. International Journal of Control. 2002, 75(16-17):1356-1367.

[6]     王学梅,张波,丘东元.H桥正弦逆变器的快变和慢变稳定性及混沌行为研究[J]. 物理学报, 2009, 58(4): 2248-2254.

Wang Xuemei, Zhang Bo, Qiu Dongyuan. Fast and slow stability and chaotic behavior of H-bridge sinusoidal inverters[J]. Acta Phys. Sin., 2009, 58(4): 2248-2254.

[7]     雷博, 肖国春, 吴旋律, . 单相全桥DC-AC电压逆变电路数字控制中的振荡现象分析[J], 物理学报, 2011, 60(9): 90501-11.

Lei Bo, Xiao Guochun, Wu Xuanlu, et al. Analysis of oscillation phenomena in digital control of single-phase full-bridge DC-AC voltage inverter circuit[J], Acta Physica Sinica, 2011, 60(9): 90501-11.

[8]     张金科, 伍小杰, 赵明龙, . 开关频率对SPWM逆变器动态行为的影响[J]. 电力自动化设备, 2015, 35(11): 109-116.

Zhang Jinke, Wu Xiaojie, Zhao Minglong, et al. Influence of switching frequency on dynamic behavior of SPWM inverter[J]. Electric Power Automation Equipment, 2015, 35(11): 109-116.

[9]       陶慧, 郑征. 数字控制H桥逆变器的非线性行为[J]. 河南理工大学学报(自然科学版), 2018,37(03): 101-106+123.

Tao Hui, Zheng Zheng. Nonlinear behavior of digitally controlled H-bridge inverters[J]. Journal of Henan Polytechnic University(Natural Science), 2018,37(03): 101-106+123.

[10]    陶彩霞,陈庆花,田莉, . PR调节下三相并网逆变器的分岔现象分析[J]. 电力系统保护与控制,2018,46(12):100-107.

Tao Caixia, Chen Qinghua, Tian Li, et al. Analysis of bifurcation phenomenon of three-phase grid-connected inverter under quasi-PR regulation[J]. Power System Protection and Control, 2018, 46(12): 100-107.

[11]  高志刚, 樊辉, 徐少华, . 改进型双向Z源储能变流器拓扑结构及空间电压矢量调制策略[J]. 高电压技术,2015,41(10):3240-3248.

Gao Zhigang, Fan Hui, Xu Shaohua, et al. Improved bidirectional Z-source energy storage converter topology and space voltage vector modulation strategy[J]. High Voltage Engineering, 2015, 41(10): 3240-3248.

[12]  徐少华, 李建林, 惠东. 多储能逆变器并联系统在微网孤岛条件下的稳定性分析及其控制策略[J]. 高电压技术,2015,41(10):3266-3273.

Xu Shaohua, Li Jianlin, Hui Dong. Stability analysis and control strategy of multi-energy storage inverter parallel system under micro-network islanding conditions[J]. High Voltage Engineering, 2015, 41(10): 3266-3273 .

[13]  郑征, 王莹秋. 级联H桥整流器控制策略[J]. 武汉大学学报(工学版),2018,51(02):159-164+171.

Zheng Zheng, Wang Yingqiu. Control Strategy of Cascaded H-Bridge Rectifier[J]. Journal of Wuhan University (Engineering Science), 2018, 51(02): 159-164+171.

[14] 徐昌彪,钟德,夏诚,等.一个新的超大范围混沌系统及其自适应滑模控制[J].振动与冲击,201938 (3) : 125-130

XU Changbiao ZHONG DeXIA Chenget alA new chaotic system with parameter b in a super-large range and its adaptive sliding mode control J]. Journal of Vibration and Shock201938(3) : 125-130

[15] 庞辉,梁军,王建平,等.考虑系统不确定性的车辆主动悬架自适应模糊滑模控制[J].振动与冲击,201837 (15) : 261-269

PANG HuiLIANG JunWANG Jianpinget alAdaptive fuzzy sliding mode control for vehicle active suspension systems considering system uncertaintyJ].Journal of Vibration and Shock201938(3) : 261-269

[16] 郭珂, 周林, 龙崦平. H桥变换器中分岔与混沌现象的研究进展与趋势[J]. 重庆大学学报, 2013, 36(07): 52-60.

Guo Wei, Zhou Lin, Long Yuping. Research Progress and Trend of Bifurcation and Chaos in H-Bridge Converters[J]. Journal of Chongqing University, 2013, 36(07): 52-60.

[17] 刘洪臣, 李飞, 杨爽. 基于周期性扩频的单相H桥逆变器非线性现象的研究[J]. 物理学报, 2013, 62(11): 98-105.

Liu Hongchen, Li Fei, Yang Shuang. Research on nonlinear phenomena of single-phase H-bridge inverter based on periodic spread spectrum[J]. Acta Phys. Sinica, 2013, 62(11): 98-105.

[18] 郝翔, 谢瑞良, 杨旭, . 基于脉冲宽度调制的滑模变结构控制的一阶H桥逆变器的分岔和混沌行为研究[J]. 物理学报, 2013, 62(20): 1-15.

Hao Xiang, Xie Ruiliang, Yang Xu, et al. Bifurcation and chaotic behavior of first-order H-bridge inverter based on sliding-mode variable structure control with pulse width modulation[J]. Acta Phys. Sinica, 2013, 62(20 ): 1-15.

[19] 代云中,任海军,林春旭,吴显松. 滑模变结构控制H6结构逆变器的非线性行为和稳定域[J]. 高电压技术,2017,43(04):1152-1159.

Dai Yunzhong, Ren Haijun, Lin Chunxu, Wu Xiansong. Sliding mode variable structure control nonlinear behavior and stability domain of H6 structure inverter[J]. High Voltage Engineering, 2017, 43(04): 1152-1159.


PDF(1799 KB)

Accesses

Citation

Detail

段落导航
相关文章

/