
周期性输流管道的非线性动力学特性研究
Analysis of nonlinear dynamic characteristics of periodic pipe conveying fluid
绝对节点坐标法 / 周期性输流管道 / 非线性动力学 / 混沌 {{custom_keyword}} /
absolute nodal coordinate formulation / periodic pipe conveying fluid / nonlinear dynamics / chaotic response {{custom_keyword}} /
[1] Paidoussis M P. Fluid-Structure Interactions: Slender Structures and Axial Flow (Vol. 1). London: Academic Press, 1998.
[2] Paidoussis M P. Fluid-Structure Interactions: Slender Structures and Axial Flow (Vol. 2). London: Academic Press, 2004.
[3] Semler C , Li G X , Paidoussis M P . The Non-linear Equations of Motion of Pipes Conveying Fluid[J]. Journal of Sound and Vibration, 1994, 169(5):577-599.
[4] Wadham-Gagnon M , M.P. Paidoussis, Semler C . Dynamics of cantilevered pipes conveying fluid. Part 1: Nonlinear equations of three-dimensional motion[J]. Journal of Fluids and Structures, 2007, 23(4):545-567.
[5] Stangl M, Gerstmayr J, Irschik H. A large deformation planar finite element for pipes conveying fluid based on the absolute nodal coordinate formulation[J]. Journal of Computational and Nonlinear Dynamics, 2009, 4(3): 031009.
[6] 蔡逢春, 臧峰刚, 叶献辉, 等. 基于绝对节点坐标法的输流管道非线性动力学分析[J]. 振动与冲击, 2011, 30(6):143-146.
CAI Feng-chun, ZANG Feng-gang, YE Xian-hui, et al. Analysis of nonlinear dynamic behavior of pipe conveying fluid based on absolute nodal coordinate formulation[J]. Journal of vibration and shock, 2011, 30(6):143-146.
[7] Stangl M, Gerstmayr J, Irschik H. An alternative approach for the analysis of nonlinear vibrations of pipes conveying fluid[J]. Journal of Sound and Vibration, 2008, 310(3): 493-511.
[8] Zhou K, Xiong F R, Jiang N B, et al. Nonlinear vibration control of a cantilevered fluid-conveying pipe using the idea of nonlinear energy sink[J]. Nonlinear Dynamics, 2018: 1-22.
[9] Ni Q, Wang Y, Tang M, et al. Nonlinear impacting oscillations of a fluid-conveying pipe subjected to distributed motion constraints[J]. Nonlinear Dynamics, 2015, 81(1-2): 893-906.
[10] Yan H, Dai H, Ni Q, et al. Nonlinear dynamics of a sliding pipe conveying fluid[J]. Journal of Fluids and Structures, 2018, 81: 36-57.
[11] Shabana A A. An absolute nodal coordinates formulation for the large rotation and deformation analysis of flexible bodies. Technical Report. No. MBS96-1-UIC, University of Illinois at Chicago, 1996.
[12] Shabana A A. Definition of the Slopes and the Finite Element Absolute Nodal Coordinate Formulation[J]. Multibody System Dynamics, 1997, 1(3):339-348.
[13] Yu D, Païdoussis M P, Shen H, et al. Dynamic stability of periodic pipes conveying fluid[J]. Journal of Applied Mechanics, 2014, 81(1): 011008.
[14] Dai H L, Wang L, Ni Q. Dynamics of a fluid-conveying pipe composed of two different materials[J]. International Journal of Engineering Science, 2013, 73: 67-76.
[15] Li Q, Liu W, Zhang Z, et al. Parametric Resonance of Pipes with Soft and Hard Segments Conveying Pulsating Fluids[J]. International Journal of Structural Stability and Dynamics, 2018, 18(10): 1850119.
/
〈 |
|
〉 |