
基于VMD-SSI的结构模态参数识别
Structural modal parameter identification based on VMD-SSI
变分模态分解(VMD) / 随机子空间法(SSI) / 模态参数识别 / 统计检验 {{custom_keyword}} /
variational mode decomposition(VMD) / stochastic subspace identification(SSI) / modal parameter / statistical test {{custom_keyword}} /
[1] Zhang J, Maes K, De Roeck G, et al. Optimal sensor placement for multi-setup modal analysis of structures[J]. Journal of Sound and Vibration, 2017, 401: 214–232.
[2] Ewins D J. Modal Testing: Theory Practice and Application(second Edition)[M]. Research Studies Press, 2000.
[3] 曹树谦,张文德,萧龙翔.振动结构模态分析:理论、实验与应用(第2版) [M].天津:天津大学出版社,2014.
CAO Shuqian, ZHANG Wende, XIAO Longxiang. Modal analysis of vibrating structures: Theory, experiment and application (Second edition) [M]. Tianjin: Tianjin Jing University Press, 2014.
[4] Wang J , Law S S , Yang Q S . Sensor placement methods for an improved force identification in state space[J]. Mechanical Systems & Signal Processing, 2013, 41(1-2):254-267.
[5] 李帅.工程结构模态参数辨识与损伤识别方法研究[D].重庆大学博士学位论文,2013.
LI Shuai. Research on modal parameter identification and damage identification method of engineering structure [D]. Chongqing University, 2013.
[6] Huang N E , Shen Z, Long S R. A new view of nonlinear water waves: the Hilbert spectrum[J]. Annual Review of Fluid Mechanics, 1999, 31: 417-457.
[7] Rilling G, Flandrin P. One or two frequencies? The empirical mode decomposition answers[J]. IEEE Transactions on Signal Processing, 2008, 56 (1): 85-95.
[8] Dragomiretskiy K, Zosso D. Variational mode decomposition [J]. IEEE Transactions on Signal Processing, 2014, 62(3):531-544.
[9] Bagheri A, Ozbulut O E, Harris D K. Structural system identification based on variational mode decomposition [J]. Journal of Sound and Vibration, 2018, 417:182-197.
[10] 刘长良,武英杰,甄成刚. 基于变分模态分解和模糊C均值聚类的滚动轴承故障诊断[J]. 中国电机工程学报, 2015,35(13):3358-3365.
LIU Changliang, WU Yingjie, ZHEN Chenggang. Rolling bearing fault diagnosis based on variational mode decomposition and fuzzy C means clustering [J]. Proceedings of The Chinese Society for Electrical Engineering, 2015,35(13):3358-3365.
[11] 刘尚坤,唐贵基,王晓龙. 基于改进变分模态分解的旋转机械故障时频分析方法[J]. 振动工程学报, 2016, 29(6):1119-1126.
LIU Shangkun, TANG Guiji, WANG Xiaolong. Time frequency analysis method for rotary mechanical fault based on improved variational mode decomposition [J]. Journal of Vibration Engineering, 2016, 29(6):1119-1126.
[12] 唐贵基,王晓龙. IVMD融合奇异值差分谱的滚动轴承早期故障诊断[J]. 振动、测试与诊断, 2016,36(4):700-707.
TANG Guiji, WANG Xiaolong. An incipient fault diagnosis method for rolling bearing based on improved variational mode decomposition and singular value difference spectrum [J]. Journal of Vibration, Measurement & Diagnosis, 2016,36(4):700-707.
[13] 牟伟杰, 石林锁, 蔡艳平,等. 基于KVMD-PWVD与LNMF的内燃机振动谱图像识别诊断方法[J]. 振动与冲击,2017,36(2):45-51.
MOU Weijie, SHI Linsuo, CAI Yanping, et al. IC engine fault diagnosis method based on KVMD-PWVD and LNMF [J]. Journal of Vibration and Shock, 2017,36(2):45-51.
[14] Li Z P, Chen J L, Zi Y Y, et al. Independence-oriented VMD to identify fault feature for wheel set bearing fault diagnosis of high speed locomotive [J]. Mechanical Systems and Signal Processing, 2017, 85:512-529.
[15] Lian J J, Liu Z, Wang H J, et al. Adaptive variational mode decomposition method for signal processing based on mode characteristic [J]. Mechanical Systems and Signal Processing, 2018, 107:53-77.
[16] 钱征文, 程礼, 李应红. 利用奇异值分解的信号降噪方法[J]. 振动、测试与诊断, 2011, 31(4):459-463.
QIAN Zhengwen, CHENG Li, LI Yinghong. Noise reduction method based on singular value decomposition [J]. Journal of Vibration, Measurement & Diagnosis, 2011, 31(4):459-463.
[17] Zhang X H, Xu Y L, Zhu S Y, et al. Dual-type sensor placement for multi-scale response reconstruction [J]. Mechatronics, 2014,24:376-384.
[18] 盛骤, 谢式千, 潘承毅. 概率论与数理统计(第四版)[M].北京:高等教育出版社,2010.
SHENG Zhou, XIE Shiqian, PAN Chengyi. Probability theory and mathematical statistics (Fourth edition)[M]. Beijing: Higher Education press, 2010.
/
〈 |
|
〉 |