考虑温度影响的软黏土长期动孔压模型研究

丁修恒1,2,刘干斌1,陈航1,朱瑶宏1,谢琦峰1

振动与冲击 ›› 2020, Vol. 39 ›› Issue (11) : 123-128.

PDF(1028 KB)
PDF(1028 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (11) : 123-128.
论文

考虑温度影响的软黏土长期动孔压模型研究

  • 丁修恒1,2,刘干斌1,陈航1,朱瑶宏1,谢琦峰1
作者信息 +

Study on long-term dynamic pore pressure model of soft clay considering temperature effect

  • DING Xiuheng1,2, LIU Ganbin1, CHEN Hang1, ZHU Yaohong1, XIE Qifeng1
Author information +
文章历史 +

摘要

以宁波轨道交通④层淤泥质黏土为对象,开展了不同温度、动应力、初始偏应力、围压作用下的动三轴试验,获得了不同试验条件对孔压的影响规律。在此基础上,对现有的孔压-振动次数双曲线模型进行改进,建立了考虑温度影响的动孔压-振动次数模型;其次,利用孔压试验结果对模型进行验证,并给出了不同试验工况下的模型参数;最后,基于动态平衡假设,建立了长期动荷载作用下考虑温度影响的归一化孔压预测模型,模型预测值与试验结果吻合性较好,可以为轨道交通设计和施工提供理论依据。

Abstract

Taking the ④ layers of silty clay in Ningbo Rail Transit as the object, the dynamic triaxial tests under different temperature, dynamic stress, initial deviatoric stress and confining pressure were carried out, and the influence of different test conditions on the pore pressure was obtained. On this basis, the existing hyperbolic model of pore pressure-vibration times is improved, and furthermore, the dynamic pore pressure-vibration number model considering the influence of temperature is established. Secondly, the model is verified by the pore pressure test results, and the models under different test conditions are given. Finally, based on the dynamic equilibrium assumption, a normalized pore pressure prediction model considering the temperature influence under long-term dynamic loading is presented. The prediction value of model is in good agreement with the experimental results, which can provide a theoretical basis for rail transit design and construction.

关键词

温度 / 软黏土 / 动孔压 / 预测模型

Key words

Temperature / soft clay / dynamic pore pressure / prediction model

引用本文

导出引用
丁修恒1,2,刘干斌1,陈航1,朱瑶宏1,谢琦峰1. 考虑温度影响的软黏土长期动孔压模型研究[J]. 振动与冲击, 2020, 39(11): 123-128
DING Xiuheng1,2, LIU Ganbin1, CHEN Hang1, ZHU Yaohong1, XIE Qifeng1. Study on long-term dynamic pore pressure model of soft clay considering temperature effect[J]. Journal of Vibration and Shock, 2020, 39(11): 123-128

参考文献

[1]Hyde A F L. A Pore pressure and stability model for a silty clay under repeated loading[J]. Géotechnique, 1985, 35(2):113-125.
[2]Finn W D L, Bhatia S K. Prediction of seismic porewater pressures[C]//Proceedings of the Tenth International Conference on Soil Mechanics and Foundation Engineering. 1981: 201-206
[3]EIGENBROD K D, GRAHAM J, BURAK J P. Influence of cycling pore-water pressures and principal stress ratios on drained deformations in clay[J]. Canadian Geotechnical Journal, 1992, 29: 326-333.
[4] 张茹, 何昌荣, 费文平, 等. 固结应力比对土样动强度和动孔压发展影响规律的影响[J]. 岩土工程学报, 2006, 28(1):101-105(ZHANG Ru, HE Chang-rong, FEI Wen-ping, et al. Effect of consolidation stress ratio on dynamic strength and dynamic pore water pressure of soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(1): 101-105)
[5]MASAYUKI H, KAZUYA Y, KAZUTOSHI H. Prediction of clay behavior in undrained and partially drained cyclic triaxialtests[J]. Soils and Foundations, 1992, 32(4): 117-127.
[6]周建. 循环荷载作用下饱和软粘土的孔压模型[J]. 工程勘察, 2000, 4:7-9
[7]王军, 蔡袁强, 李校兵. 循环荷载作用下超固结软黏土软化-孔压模型研究[J]. 岩土力学, 2008, 29(12): 3217-3222.(WANG Jun, CAI Yuanqiang, GUO Lin, et al. Pore pressure and strain development of Wenzhou saturated soft soil under cyclic loading by stages[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1349-1354)
[8]赵春彦,周顺华,庄丽. 上海地区软土的循环累积孔压模型[J]. 铁道学报, 2012,34(1):77-83(ZHAO Chunyan, ZHOU Shunhua, ZHUANG Li. Cyclic accumulative pressure model of soft clay in the Shanghai region. Journal of the China Railway Society, 2012, 34(1): 77-83)
[9]魏新江, 张涛, 丁智, 王常晶, 蒋吉清. 地铁荷载下不同固结度软黏土的孔压试验模型[J]. 岩土力学, 2014, 35(10): 2761-2769(WEI Xinjiang, ZHANG Tao, DING Zhi, WANG Changjing, JIANG Jiqing. Experimental study of pore pressure model of soft clay with different consolidation degrees under subway loading[J]. Rock and Soil Mechanics, 2014, 35(10): 2761-2769)
[10]聂章博, 迟世春. 循环荷载作用下心墙掺砾土动应力应变孔压模型[J]. 大连理工大学学报, 2016, 56(6): 624-630(NIE Zhangbo, CHI Shichun. Dynamic stress- strain pore water pressure model of core gravelly soil under cyclic loading[J]. Journal of Dalian university of technology, 2016,56(6):624-630)
[11]张修, 巫尚蔚, 张超, 杨春和. 不同固结条件下尾矿动孔压演化规律[J]. 岩土力学, 2018, 39(3): 815-822 (ZHANG Xiuzhao, WU Shangwei, ZHANG Chao, YANG Chunhe. Dynamic pore-water pressure evolution of tailings under different consolidation conditions[J]. Rock and Soil Mechanics, 2018, 39(3): 815-822)
[12]李晶晶,孔令伟. 应力历史影响下的膨胀土动力参数响应特征[J]. 振动与冲击, 2017,36 (12):181-188(LI Jingjing, KONG Lingwei. The influence of stress history on the dynamic parameters of expansive soils[J]. Journal of vibration and shock, 2017, 36 (12):181-188
[13]宋洁. 城市轨交区间隧道热环境现场实测研究[J]. 地下工程与隧道, 2014, 4: 43-48 (SONG Jie. Site Measurement of thermal environment of urban rail transit interval tunnel. Underground Engineering and tunnels[J], 2014,4:43-48)
[14] SEED B, LEE K L. Liquefaction of saturated sands during cyclic loading[J]. Journal of Soil Mechanics and Foundations Division, 1966, 92(SM6): 105-134.
[15]章克凌, 陶振宇. 饱和粘土在循环荷载作用下的孔压预测[J]. 岩土力学, 1994,15(3): 9-17(ZHANG Keling, TAO Zhenyu. The prediction of pore pressure of saturated clay under cyclic loading[J]. Rock and Soil Mechanics, 1994, 15(3): 9-17)
 

PDF(1028 KB)

Accesses

Citation

Detail

段落导航
相关文章

/