标准动车组用空气弹簧动力学建模与服役性能试验研究

戚壮1,乔伟超1,陈清化2,叶特2,陈恩利1

振动与冲击 ›› 2020, Vol. 39 ›› Issue (11) : 129-137.

PDF(3124 KB)
PDF(3124 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (11) : 129-137.
论文

标准动车组用空气弹簧动力学建模与服役性能试验研究

  • 戚壮1,乔伟超1,陈清化2,叶特2,陈恩利1
作者信息 +

Study on Evolution of Aging Stiffness Characteristics of Air Springs

  • QI Zhuang1, QIAO Weichao1, CHEN Qinghua2, YE Te2, CHEN Enli1
Author information +
文章历史 +

摘要

空气弹簧作为我国动车组二系悬挂的关键部件,其性能直接影响到乘客的舒适性,甚至影响到行车安全。以我国最新研发的标准动车组上使用的510B型空气弹簧为研究对象,研究其服役前后性能的改变。分别建立了空气弹簧的有限元模型及气动力学模型,并对新空气弹簧和已经服役30万公里以上的510B型空气弹簧进行静态、动态的例行试验。通过对模型仿真数据与试验数据进行对比,结果表明:新空气弹簧模型动、静态的仿真的滞回曲线和试验所得的滞回曲线吻合较好,所建立的510B型空气弹簧模型能够很好的描述空气弹簧的动态特性;通过修改动力学模型的相关参数,能够很好的描述已经服役的空气弹簧的特性;能够初步的揭示510B型空气弹簧在服役后其垂向刚度及阻尼会有一定程度的增加,对研究空气弹簧老化以及其对整车动力学性能的影响具有一定的实际应用价值。

Abstract

Air spring ,whose performance directly affects passenger comfort and even affects driving safety, is the key component of the second suspension of a high-speed EMU. Taking the 510B air spring used in the latest EMU developed in China as the research object to study the air spring’s performance changes before and after service. The finite element model and aerodynamic model of the air spring were established respectively, and the static and dynamic routine tests were carried out on the new air spring and the 510B air spring that had already served more than 300,000 kilometers. By comparing the model simulation data with the experimental data, the results show that: The hysteretic curve of the dynamic and static simulation of the new air spring model agrees well with the hysteresis curve obtained by the test. The established Model 510B air spring model can well describe the dynamic characteristics of air springs; By modifying the relevant parameters of the kinetic model, the characteristics of the air springs already in service can be well described; It can be preliminarily revealed that the vertical stiffness and damping of Type 510B air spring will increase to a certain extent after service, which has certain practical application value for studying the aging of air spring and its influence on the dynamic performance of the whole vehicle.

关键词

标准动车组 / 空气弹簧 / 服役特性 / 滞回曲线

Key words

China Standard EMU / Air spring / Service characteristics / Hysteresis curve

引用本文

导出引用
戚壮1,乔伟超1,陈清化2,叶特2,陈恩利1. 标准动车组用空气弹簧动力学建模与服役性能试验研究[J]. 振动与冲击, 2020, 39(11): 129-137
QI Zhuang1, QIAO Weichao1, CHEN Qinghua2, YE Te2, CHEN Enli1. Study on Evolution of Aging Stiffness Characteristics of Air Springs[J]. Journal of Vibration and Shock, 2020, 39(11): 129-137

参考文献

[1] 押越啓介,新井浩,加藤博之等.高等化い向けた車両開発(台車). JR東日本研究開発センタ一. 2010(31):22-26.
[2] Leboeuf M, Palade A. Le TGV Atlantique: traffic et économie. Revue Générale des Chemins de Fer. 1986,105(12):769-776.
[3] Grajnert J, Krettek O. Zur PHänomenologie und Ersatzmodellbildung von Luftfedern. ZEV-Glas. 1991,115(7/8):218-223.
[4] StefanoBruni, JordiVinolas, MatsBerg, et al. Modelling of suspension components in a rail vehicle dynamics context[J]. Vehicle System Dynamics, 2011, 49(7):1021-1072.
[5] 李芾, 付茂海, 黄运华. 空气弹簧动力学特性参数分析[J]. 西南交通大学学报, 2003, 38(3):276-281.
Li F, Fu M H, Huang Y H. Analysis of dynamic characteristic parameter of air spring[J]. Journal of Southwest Jiaotong University, 2003.
[6] 戚壮, 李芾, 黄运华,等. 高速动车组空气弹簧垂向动态特性研究[J]. 机械工程学报, 2015, 51(10) :129-136.
Zhuang Q I. Study on the Vertical Dynamic Characteristics of Air Spring Used in High-speed EMU[J]. Journal of Mechanical Engineering, 2015, 51(10):129.
[7] 陈俊杰, 殷智宏, 何江华,等. 带节流阻尼孔和附加气室的空气弹簧系统建模和动态特性研究[J]. 机械工程学报, 2017, 53(8):166-174.
Chen J J, Yin Z Z, He J H, et al. Study on Modelling and Dynamic Characteristic of Air Spring with Thtottling Damping Orifice and Auxiliary Chamber[J], Journal of Mechanical Engineering, 2017, 53(8):166-174
[8]  Mazzola L, Berg M. Secondary suspension of railway vehicles-air spring modeling: performance and critical issues. Journal of Rail and Rapid Transit. 2014, 228(3):225-241
[9] 吴善跃, 朱石坚, 黄映云. 带辅助气室橡胶空气弹簧的冲击特性分析[J]. 振动工程学报, 2005, 18(2):248-251.
Shan-Yue W U, Zhu S J, Huang Y Y. Analysis of the shock absorbing performance of a rubber air spring with auxiliary chamber[J]. Journal of Vibration Engineering, 2005, 18(2):248-251.
[10] 王家胜, 朱思洪. 带附加气室空气弹簧动刚度的线性化模型研究[J]. 振动与冲击, 2009, 28(2):72-76.
Wang J S, Zhu S H. Linearized model for dynamic stiffness of air spring with auxiliary chamber[J]. Journal of Vibration & Shock, 2009, 28(2):72-76.
 [11] Oda N, Nishimura S. Vibration of Air Suspension Bogies and Their Design[J]. Jsme International Journal, 2008, 13(55):43-50.
[12] 高红星, 池茂儒, 朱旻昊,等. 空气弹簧模型研究[J]. 机械工程学报, 2015, 51(4):108-115.
    Gao H. Study on Air Spring Model[J]. Journal of Mechanical Engineering, 2015, 51(4):108.
[13]上海交通大学机械与动力工程学院组织编写. 高等工程热力学[M]. 科学出版社, 2006.
[14] 戚壮, 李芾, 黄运华,等. 基于AMESIM平台的轨道车辆空气弹簧系统气动力学仿真模型研究[J]. 中国铁道科学, 2013, 34(3):79-86.
Qi Z, Li F, Huang Y, et al. Study on the pneumatic simulation model of railway vehicle air spring system based on AMESIM[J]. China Railway Science, 2013, 34(3):79-86.
[15]徐芝伦. 弹性力学[M]. 北京: 高等教育出版社, 2006:39―41.
Xu Zhilun. Elasticity [M]. Beijing: Higher EducationPress, 2006: 39―41.
[16] 康承良. 高速列车空气弹簧主动控制研究[D]. 西南交通大学, 2016.
Kang  C  L. Research on active air spring control of high-speed train[D]. Southwest Jiaotong University.2016.
[17] Berg M. Model for rubber springs in the dynamic analysis of rail vehicles[J]. Proceedings of the Institution of Mechanical Engineers Part F Journal of Rail & Rapid Transit, 1997, 211(2):95-108.
[18] MATSBERG. A Non-Linear Rubber Spring Model for Rail Vehicle Dynamics Analysis[J]. Vehicle System Dynamics, 1998, 30(3-4):197-212.
[19] Takahiro Tomioka, Tadao Takigami. Reduction of bending vibration in railway vehicle carbodies using carbodyâ bogie dynamic interaction[J]. Vehicle System Dynamics, 2010, 48(sup1):467-486
[20] Docquier N , Fisette P , Jeanmart H . Multiphysic modelling of railway vehicles equipped with pneumatic suspensions[J]. Vehicle System Dynamics, 2007, 45(6):20.
 

PDF(3124 KB)

Accesses

Citation

Detail

段落导航
相关文章

/