土-结构相互作用系统动力响应的基本特征之一是有限范围内弹性地基与其支承结构共同运动,将土体运动引入系统的动力学方程可体现其对系统动力学特性的影响。基于考虑有限深度土体运动影响的Winkler地基上有限长梁的非线性运动方程,利用Galerkin法和多尺度法,求得弹性地基梁1/2次谐波共振的幅频响应方程和位移的二阶近似解。进而通过数值计算,得到了梁1/2次谐波共振的幅频响应曲线,研究了地基深度、质量、弹性模量、Winkler参数和阻尼等对弹性地基梁1/2次谐波共振响应的影响。研究结果表明:有限深度土体运动对Winkler地基梁1/2次谐波共振响应影响显著。运动方程中引入土体运动的影响后,梁1/2次谐波共振区间明显减小。随地基深度、质量和弹性模量改变,弹性地基梁1/2次谐波共振的幅频响应曲线偏转程度、共振区间和响应幅值等均发生定量改变。当弹性地基刚度增大到一定程度,Winkler地基参数变化对系统1/2次谐波共振响应的影响明显减弱。阻尼对系统动力响应起抑制作用,当参数η增大到一定值后将不会出现1/2次谐波共振响应的非平凡解。
Abstract
One of the essential characteristics of the dynamic response of the soil-structure interaction system is that the elastic foundation in a limited range and its supporting structure motion together. The dynamic equations that introduce soil motion into the system can reflect its effect on the system's dynamic characteristics. On the basis of the nonlinear equation of motion of the finite-length beam on Winkler foundation with the consideration of finite-depth soil mass motion, the Galerkin method and the multiple scales method were employed to obtain the frequency response equation and the second-order approximation solution of the 1/2 order sub-harmonic resonance of the beam. Then, through numerical calculation, the frequency-response curves of the 1/2 order sub-harmonic resonance of the beam are obtained. Meanwhile, the effects of foundation depth, soil mass, elastic modulus, Winkler parameter, and damping on the 1/2 order sub-harmonic resonance response of beams on elastic foundation were investigated. The results show that the effect of the finite-depth soil mass motion on the 1/2 order sub-harmonic resonance of the beam on Winkler foundation was significant. When the influence of soil mass motion is introduced into the equation of motion of the beam, the range of 1/2 order sub-harmonic resonance of the system is significantly reduced. With the change of the depth, mass, and elastic modulus of foundation, there are some quantitatively changes that were observed in the frequency-response curves of the 1/2 order sub-harmonic resonance of beam on elastic foundation, such as the degree of deflection, resonance range, and response amplitude. When the stiffness of the elastic foundation increased to a specific value, the effect of changes in the Winkler foundation parameters on the system’s 1/2 order sub-harmonic resonance response was significantly weakened. Because the damping inhibited the dynamic response of the system, when the parameter η increased to a specific value, the non-trivial solution of the 1/2 order sub-harmonic resonance would not appear.
关键词
弹性地基梁 /
Winkler模型 /
土体运动 /
1/2次谐波共振 /
幅频响应曲线
{{custom_keyword}} /
Key words
Beam on elastic foundation /
Winkler model /
soil mass motion /
1/2 order sub-harmonic resonance /
frequency-response curves
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] YOUNESIAN D, HOSSEINKHANI A, ASKARI H, et al. Elastic and viscoelastic foundations: a review on linear and nonlinear vibration modeling and applications [J]. Nonlinear Dynamics, 2019, 97(1): 853-895.
[2] 蒲育, 滕兆春. Winkler-Pasternak弹性地基FGM梁自由振动二维弹性解[J]. 振动与冲击, 2015, 34(20): 74-79.
PU Yu, TENG Zhaochun. Two-dimensional elasticity solutions for free vibration of FGM beams resting on Winkler-Pasternak elastic foundations [J]. Journal of Vibration and Shock, 2015, 34(20): 74-79.
[3] TIMOSHENKO S. Vibration problems in engineering [M]. New York: Wolfenden Press, 2008.
[4] 李顺群, 郑刚. 复杂条件下Winkler地基梁的解析解[J]. 岩土工程学报, 2008, 30(6): 873-879.
LI Shunqun, ZHENG Gang. Analytic solution of beams on Winkler foundation under complex conditions [J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 873-879.
[5] THAMBIRATNAM D, ZHUGE Y. Free vibration analysis of beams on elastic foundation [J]. Computers & Structures, 1996, 60(6): 971-980.
[6] PELLICANO F, MASTRODDI F. Nonlinear dynamics of a beam on elastic foundation. Nonlinear Dynamics, 1997, 14(4): 335-355.
[7] 吴志明, 黄茂松, 吕丽芳. 桩-桩水平振动动力相互作用研究[J]. 岩土力学, 2007, 28(9): 1848-1855.
WU Zhiming, HUANG Maosong, LIU Lifang. Research on pile-pile dynamic interaction of lateral vibration [J]. Rock and Soil Mechanics, 2007, 28(9): 1848-1855.
[8] 楼梦麟, 沈霞. 弹性地基梁振动特性的近似分析方法[J]. 应用力学学报, 2004, 21(3): 149-153.
LOU Menglin, SHEN Xia. An approach for analyzing dynamic characteristic of reinforced concrete beam on elastic foundation [J]. Chinese Journal of Applied Mechanics, 2004, 21(3): 149-153.
[9] 马建军, 刘齐建, 王连华, 等. Winkler地基上有限长梁非线性自由振动[J]. 工程力学, 2012, 29(8): 58-62.
MA Jianjun, LIU Qijian, WANG Lianhua, et al. Non-linear free vibration of finite-length beams on the Winkler foundation [J]. Engineering Mechanics, 2012, 29(8): 58-62.
[10] NAYFEH A H, NAYFEH S A. Nonlinear normal modes of a continuous system with quadratic non-linearities. Journal of Vibration and Accoustics, 1995, 117(2): 199-205.
[11] COSKUN I, ENGIN H. Non-linear vibrations of a beam on an elastic foundation. Journal of Sound and Vibration, 1999, 223(3): 335-354.
[12] FROIO D, RIZZI E, SIMÕES FMF, et al. Dynamics of a beam on bilinear elastic foundation under harmonic moving load [J]. Acta Mechanica, 2018, 229(10):4141-4165.
[13] 时伉丽, 丁虎, 陈立群, 等. 移动简谐力激励非线性无限长地基梁稳态响应[J]. 动力学与控制学报, 2015, 13(5): 338-342.
SHI Kangli, DING Hu, CHEN Liqun, et al. Steady state response of an infinite beam on a nonlinear foundation to a moving harmonic load [J]. Journal of Dynamics and Control, 2015, 13(5): 338-342.
[14] DING H, CHEN L, YANG S. Convergence of Galerkin truncation for dynamic response of finite beams on nonlinear foundations under a moving load [J]. Journal of Sound and Vibration.2012, 331(10): 2426–2442.
[15] ATTAR M, KARRECH A, REGENAUER-LIEB K. Non-linear analysis of beam-like structures on unilateral foundations: A lattice spring model [J]. International Journal of Solids and Structures, 2016, 15(88-89): 192-214.
[16] RADES M. Dynamic analysis of an inertial foundation model [J]. International Journal of Solids and Structures. 1972, 8(12): 1353–1372.
[17] MA J, LIU F, NIE M, et al. Nonlinear free vibration of a beam on Winkler foundation with consideration of soil mass motion of finite depth [J]. Nonlinear Dynamics, 2018, 92(2): 429-441.
[18] NAYFEH A H, LACARBONARA W. On the discretization of distributed-parameter systems with quadratic and cubic nonlinearities [J]. Nonlinear Dynamics, 1997, 13(3): 203-220.
[19] NAYFEH A H, MOOK D T. Nonlinear Oscillations [M]. New York: Wiley, 1979.
[20] WANG L, MA J, ZHAO Y. et al. Refined modeling and free vibration of inextensional beams on the elastic foundation [J]. Journal of Applied Mechanics, 2013, 80(4): 041026.
[21] 马建军, 刘丰军, 谢镭, 等. 简谐横向荷载作用下弹性地基上不可伸长梁的1/2次亚谐共振响应分析[J]. 地震工程与工程振动, 2016, 36(3): 134-139.
MA Jianjun, LIU Fengjun, XIE Lei, et al. 1/2 sub-harmonic resonance of an inextensional beam on elastic foundation subjected to a harmonic lateral excitation [J]. Earthquake Engineering and Engineering Dynamics, 2016, 36(3): 134-139.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}