确保复杂城市环境基坑爆破开挖工程中邻近压力燃气管道的安全性是关键性问题。依托武汉地铁8号线二期竖井基坑爆破开挖工程,利用现场监测数据建立ANSYS/LS-DYNA三维有限元数值计算模型,分析计算了不同运行压力条件下埋地燃气管道的动力响应特性。研究结果表明:实际工况下管道截面峰值合振速为0.453 cm•s-1,单元峰值von-Mises应力4.95MPa,压力燃气管道处于安全运行状态;管道截面峰值合振速大于其正上方地表振速,且两者存在线性关系,由此建立管道爆破振动速度的预测模型;管道截面峰值合振速、峰值von-Mises应力均位于迎爆侧,且随管道内压的增加而增加,内压为零时为最佳运行状态,由此建立了管道峰值von-Mises应力与内压、爆破参数的数学计算模型,为实际爆破工程的安全作业提供指导。
Abstract
Ensuring the safety of adjacent pressure gas pipelines in blasting excavation projects in complex urban environments is a key issue. Based on the blasting excavation of the foundation pit of the second phase of Wuhan Metro Line 8. The three-dimensional finite element numerical calculation model of ANSYS/LS-DYNA was established by using the field monitoring data, and the dynamic response characteristics of the buried gas pipeline under different operating pressure conditions were analyzed and calculated. The results show that the peak particle velocity (PPV) of the pipeline section is 0.453 cm•s-1 and the peak effective stress (PES) stress is 4.95 MPa. The pressure gas pipeline is in safe operation. The peak particle velocity (PPV) of the pipeline section is greater than the surface peak particle velocity (PPV) above it, and there is a linear relationship between the two of them. The prediction model of the blasting vibration velocity of the pipeline is established. The peak particle velocity (PPV) and peak von-Mises stress of the pipeline section are located on the explosion side, and increase with the increase of the internal pressure of the pipeline. When the pressure is zero, it is the best operating state, thus establishing the mathematical calculation model of the peak von-Mises stress and internal pressure and blasting parameters of the pipeline, which provides guidance for the safe operation of the actual blasting project.
关键词
爆破振动 /
燃气管道 /
现场监测 /
数值模拟 /
动力响应
{{custom_keyword}} /
Key words
blasting vibration effect /
gas pipeline /
numerical simulation /
field monitoring /
dynamic response
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Sohrabi-Bidar A, Moradi A. Consideration of gas pipeline safety against vibration of blasting; Case study: Excavation in Arak-Khorramabad freeway route [J]. Journal of the Earth & Space Physics, 2017, 43(2):297−308.
[2] Abedi A S, Hataf N, Ghahramani A. Analytical solution of the dynamic response of buried pipelines under blast wave. International Journal of Rock Mechanics and Mining Sciences, Vol. 88, 2016, p.301−306.
[3] Jiang H, Xu T, Zhao D. Dynamic response and limit analysis of buried high-pressure gas pipeline under blasting load based on the Hamilton principle [J]. Journal of Vibroengineering, 2017:376−393.
[4] Parviz M, Aminnejad B, Fiouz A. Numerical simulation of dynamic response of water in buried pipeline under explosion [J]. Ksce Journal of Civil Engineering, 2017, 21(7):1−9.
[5] Rigas F. Safety of buried pressurized gas pipelines near explosion sources. Proceedings of the 1st Annual Gas Processing Symposium, 2009, p.307−316.
[6] Zhang J, Zhang L, Liang Z. Buckling failure of a buried pipeline subjected to ground explosions [J]. Process Safety & Environmental Protection, 2018, 114:36−47.
[7] Giannaros E, Kotzakolios T, Kostopoulos V. Blast response of composite pipeline structure using finite element techniques [J]. Journal of Composite Materials, 2016, 50(25).
[8] 娄敏, 明海芹. 基于LS-DYNA海底悬空管道受坠物碰撞动力响应分析[J]. 海洋通报(英文版), 2015, 34(1):113-120.
Min L, Qin M H. The dynamic response analysis of submarine suspended pipeline impacted by dropped objects based on LS-DYNA[J]. Marine Science Bulletin, 2015.
[9] 时党勇, 李裕春, 张胜民. 基于ANSYS/LS-DYNA 8.1进行显式动力分析[M]. 清华大学出版社, 2005:156−158
Shi Dangyong, Li Yuchun, Zhang Shengmin. Explicit dynamic analysis based on ANSYS/LS-DYNA 8.1 [M]. Tsinghua University Press, 2005: 156−158
[10] 高坛, 周传波, 蒋楠,等. 基坑开挖爆破下邻近管道振动速度安全阈值研究[J]. 安全与环境学报, 2017(6):2191-2195.
Gao T, Zhou C B, Jiang N, et al. Study on the vibration velocity threshold of the adjacent pipeline under the blasting excavation of the foundation pit [J]. Journal of Safety & Environment, 2017(6):2191-2195
[11] Yi C, Sjöberg J, Johansson D. Numerical modelling for blast-induced fragmentation in sublevel caving mines. Tunnelling and Underground Space Technology, Vol. 68, 2017, p.167−173.
[12] Hallquist J O. LS-DYNA keyword user’s manual. Livermore Software Technology Corporation, 2007.
[13] 中华人民共和国建设部. 城镇燃气设计规范[M]. 中国建筑工业出版社, 2006:35−36.
Ministry of Construction of the People's Republic of China. Code for Design of Town Gases [M]. China Building Industry Press, 2006: 35−36.
[14] 中华人民共和国住房和城乡建设部. GB 50253-2014, 输油管道工程设计规范[S]. 中国计划出版社,2014:55−56
Ministry of Housing and Urban-Rural Development of the People's Republic of China. GB 50253-2014, Design Specification for Oil Pipeline Engineering [S]. China Planning Press, 2014: 55−56
[15] 张黎明,赵明生,池恩安,黄波,何兴贵.爆破振动对地下管道影响试验及风险预测[J].振动与冲击,2017,36(16):241-247.
Zhang Liming,Zhao Mingsheng,Chi Enan,Huang Bo,He Xinggui.Influence Test and Risk Prediction of Blasting Vibration on Underground Pipeline[J].Journal of Vibration and Shock,2017,36(16):241-247.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}