张紧器系统对顶张式立管固有频率的影响研究

吴晨1,2,余建星1,2,余杨1,2,陈柏全1,2,3,徐立新1,2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (11) : 209-216.

PDF(1174 KB)
PDF(1174 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (11) : 209-216.
论文

张紧器系统对顶张式立管固有频率的影响研究

  • 吴晨1,2,余建星1,2,余杨1,2,陈柏全1,2,3,徐立新1,2
作者信息 +

Influence analysis of tensioner system on natural frequency of top tensioned riser

  • WU Chen1,2, YU Jianxing1,2, YU Yang1,2, CHEN Baiquan1, 2,3, XU Lixin1, 2
Author information +
文章历史 +

摘要

采用Euler-Bernoulli梁模型建立立管的水平运动控制方程,并应用Galerkin方法化简求得立管的固有频率。考虑平台的升沉运动,对比了本文推导的张紧器详细模型和工程常用的简化模型下立管的固有频率。最后基于本文推导的详细模型,研究了张紧器结构参数对立管固有频率的影响。结果表明:立管固有频率受浮体升沉运动的影响,浮体升沉运动会改变立管的共振特性,引起立管共振点的迁移和转变;采用不同张紧器模型,立管固有频率存在差异,且该差异随着固有频率阶次的增大而增大;立管固有频率受张紧器结构参数的影响,在实际工程中应合理选择张紧器的参数大小,以避免发生参激共振和涡激共振。

Abstract

The lateral vibration equation of top tensioned riser is derived based on the Euler-Bernoulli beam model, and the natural frequency of the riser is studied by use of the Galerkin method. Considering the heave motion of platform, the natural frequency of riser calculated by the detailed tensioner model proposed in this paper is comparatively studied with that calculated by the conventional simplified model used in the engineering. At last, the impact of the tensioner structure parameters on the natural frequency of riser is studied based on the proposed model. Results show that the natural frequency of riser is influenced by the heave motion of platform. The resonance characteristics of riser may change with the heave motion of platform. The natural frequency of riser differs with different tensioner models, and the difference increases with the natural frequency order. The natural frequency of riser is impacted by the tensioner structure parameters, and the tensioner parameters should be chosen reasonably to avoid parametric resonance and vortex-induced vibration of riser.

关键词

顶张式立管 / 张紧器系统 / 平台运动 / 固有频率

Key words

top tensioned riser / tensioner system / platform motion / natural frequency

引用本文

导出引用
吴晨1,2,余建星1,2,余杨1,2,陈柏全1,2,3,徐立新1,2. 张紧器系统对顶张式立管固有频率的影响研究[J]. 振动与冲击, 2020, 39(11): 209-216
WU Chen1,2, YU Jianxing1,2, YU Yang1,2, CHEN Baiquan1, 2,3, XU Lixin1, 2. Influence analysis of tensioner system on natural frequency of top tensioned riser[J]. Journal of Vibration and Shock, 2020, 39(11): 209-216

参考文献

[1] LI Xiao-min, GUO Hai-yan, MENG Fan-shun. Stress analysis of top tensioned riser under random waves and vessel motions[J]. Journal of Ocean University of China, 2010, 9(3): 251-256.
[2] Dareing D W, Huang T. Natural Frequencies of Marine Drilling Risers[J]. Journal of Petroleum Technology, 1976, 28(7):813-818.
[3] Kirk C L, Etok E U. Dynamic and static analysis of a marine riser[J]. Applied Ocean Research, 1979, 1(3):125-135.
[4] Kim Y C, Triantafyllou M S. The Nonlinear Dynamics of Long, Slender Cylinders[J]. Journal of Energy Resources Technology Transactions of the Asme, 1984, 106(2):250-256.
[5] Kim Y C. Natural Frequencies and Critical Buckling Loads of Marine Risers[J]. Journal of Offshore Mechanics & Arctic Engineering, 1986, 110(1).
[6] Cheng Y, Vandiver J K, Moe G. The Linear Vibration Analysis of Marine Risers Using the WKB-Based Dynamic Stiffness Method[J]. Journal of Sound and Vibration, 2002, 251(4):750-760.
[7] Chatjigeorgiou I K. Application of the WKB method to catenary-shaped slender structures[J]. Mathematical & Computer Modelling, 2008, 48(1):249-257.
[8] Soltanahmadi A. Determination of flexible riser natural frequencies using fourier analysis[J]. Marine Structures, 1992, 5(2-3):193-203.
[9] Sparks C. Transverse Modal Vibrations of Vertical Tensioned Risers. a Simplified Analytical Approach[J]. Oil & Gas Science & Technology, 2002, 57(1):71-86.
[10] I. Senjanović, A. M. Ljuština, Parunov J. Natural vibration analysis of tensioned risers by segmentation method[J]. Oil & Gas Science & Technology, 2006, 61(5):647-659.
[11] Graves J R, Dareing D W. Direct Method for Determining Natural Frequencies of Marine Risers in Deep Water[J]. Journal of Energy Resources Technology, 2004, 126(1):47-53.
[12] Chen Y, Chai Y H, Li X, et al. An extraction of the natural frequencies and mode shapes of marine risers by the method of differential transformation[J]. Computers & Structures, 2009, 87(21):1384-1393.
[13] Chen Y, Zhang J, Zhang H, et al. Re-examination of natural frequencies of marine risers by variational iteration method[J]. Ocean Engineering, 2015, 94:132-139.
[14] 邵卫东,唐友刚,樊娟娟,等. 考虑浮体升沉及张紧环运动深海立管固有振动特性研究[J]. 海洋工程,2012,30(2):8-13.
    SHAO Weidong, TANG Yougang, FAN Juanjuan, et al. Study of natural vibration characteristics of deep-water riser considering heave motion of platform an tension-ring’s motion[J]. THE OCEAN ENGINEERING, 2012, 30(2):8-13.
[15] 张杰,唐友刚. 深海立管固有振动特性的进一步分析[J]. 船舶力学,2014,18(1-2):165-171.
    ZHANG Jie, TANG You-gang. Further analysis on natural vibration of deep-water risers[J]. Journal of Ship Mechanics,  2014, 18(1-2):165-171.
[16] 张杰, 唐友刚, 黄磊, 等. 参数激励下深海立管多模态耦合振动特性分析[J]. 振动与冲击, 2013, 32(19):51-56.
    ZHANG Jie, TANG You-gang, HUANG Lei, et al. Multi-mode coupled vibration behavior of a deep-water riser under parametric excitations[J]. JOURNAL OF VIBRATION AND SHOCK, 2013, 32(19):51-56.
[17] Zhang L, Wu H, Yu Y, et al. Axial and transverse coupled vibration characteristics of deep-water riser with internal flow[C]. International Conference on Fluid Mechamics. 2015.
[18] 李凌. 大尺度深水立管非线性振动特性研究[D]. 天津: 天津大学, 2004.
[19] 孙传栋,黄维平,曹静. ABAQUS在深水顶张力生产立管模态分析中的应用[J]. 中国水运(下半月), 2009, 9(2).
    SUN Chuan-dong, HUANG Wei-ping, CAO Jing. Application of ABAQUS in Modal Analysis of Deep-water Top Tensioner Production Riser[J]. China Water Transport, 2009, 9(2).
[20] 陈柏全,余杨,余建星,等. 顶张式立管液压气动式张紧器的数学模型[J]. 中国造船,2018(1).
    CHEN Bai-quan, YU Yang, YU Jian-xing, et al. Mathematical Model of Hydro-Pneumatic Tensioner for Top Tensioning Riser[J]. SHIPBUILDING OF CHINA, 2018(1).

PDF(1174 KB)

Accesses

Citation

Detail

段落导航
相关文章

/