基于声发射信号与BP神经网络的煤粉粒径识别研究

程智海1,刘汇泉1,刘勇2,秦欢1,刘海龙1

振动与冲击 ›› 2020, Vol. 39 ›› Issue (11) : 258-264.

PDF(973 KB)
PDF(973 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (11) : 258-264.
论文

基于声发射信号与BP神经网络的煤粉粒径识别研究

  • 程智海1,刘汇泉1,刘勇2,秦欢1,刘海龙1
作者信息 +

Coal particle size recognition based on acoustic emission signal and BP neural network

  • CHENG Zhihai1, LIU Huiquan1, LIU Yong2, QIN Huan1, LIU Hailong1
Author information +
文章历史 +

摘要

煤粉粒径的测量是燃煤电站一项重要的工作。针对目前筛分法存在的缺点,提出了一种结合声发射信号与BP神经网络在线识别煤粉粒径的方法。在频域中对噪声信号与煤粉声发射信号进行比较,确定了信号中反映煤粉粒径的频率区间,并利用小波包置零方法对信号进行去噪,在信噪比与信号平滑度方面比较了几种常用小波函数的去噪效果。通过功率谱分析发现了信号能量随煤粉粒径的变化特征。最后提取信号能量特征,利用BP神经网络对煤粉粒径进行识别。研究结果表明,结合声发射信号与BP神经网络识别煤粉粒径,可以获得良好的效果。

Abstract

The measurement of coal particle size is an important task for coal-fired power stations. Aiming at the shortcomings of the current sieving method, a method combining on-line recognition of coal particle size with acoustic emission (AE) signal and BP neural network is proposed. The characteristics of the background noise and AE signals were compared in the frequency domain, and the frequency interval related to the particle size was confirmed in the signal. The wavelet packet zeroing method was used to de-noise the AE signal, and the de-noising performance of different wavelet function was compared in terms of signal-to-noise ratio and signal smoothness. Through the power spectrum analysis, the characteristics of signal energy with the particle size were found. Finally, the signal energy characteristics were extracted, and BP neural network was used to recognize the particle size. The research indicates that the acoustic emission technology and BP neural network can be used to monitor the coal particle size.

关键词

煤粉粒径 / 声发射信号 / BP神经网络 / 识别

Key words

coal particle size / acoustic emission signal / BP neural network / recognition

引用本文

导出引用
程智海1,刘汇泉1,刘勇2,秦欢1,刘海龙1. 基于声发射信号与BP神经网络的煤粉粒径识别研究[J]. 振动与冲击, 2020, 39(11): 258-264
CHENG Zhihai1, LIU Huiquan1, LIU Yong2, QIN Huan1, LIU Hailong1. Coal particle size recognition based on acoustic emission signal and BP neural network[J]. Journal of Vibration and Shock, 2020, 39(11): 258-264

参考文献

[1] 于金涛.声发射信号处理算法研究[M].北京:化学工业出版社,2017,1-3.
[2] 刘刚,陈超,韩金良,等.液固两相流声发射检测系统设计及实验评价[J].振动与冲击,2012,31(22):178-182.
LIU Gang, CHEN Chao, HAN Jinliang, et al. Acoustic emission device design and laboratory evaluation for fluid-solid two phase flow [J]. Journal of Vibration and Shock, 2012, 31(22):178-182.
[3] Buttle D J, Martin S R, Scruby C B. Particle sizing by quantitative acoustic emission [J]. Research in Nondestructive Evaluation, 1991, 3(1):1-26.
[4] Buttle D J, Scruby C B. Characterization of particle impact by quantitative acoustic emission [R].Harwell Reporty AERE-R13028 and Wear 137, 1990, 63-90.
[5] Hu Y, Qian X, Huang X, et al. Online continuous measurement of the size distribution of pneumatically conveyed Particles by acoustic emission methods [J]. Flow Measurement & Instrumentation, 2014, 40(1):163–168.
[6] 侯琳熙,王靖岱,阳永荣,等. 气固流化床中声发生机理及在工业装置中的应用[J]. 化工学报,2005,56(8):1474-1478.
HOU Lin-xi, WANG Jingdai, YANG Yongrong, et al. Frequency analysis of acoustic emission and application in gas-solid fluidized bed [J]. Journal of Chemical Industry and Engineering (China),2005, 56(8):1474-1478.
[7] 阳永荣,侯琳熙,王靖岱,等. 声波的多尺度分解与颗粒粒径分布的实验研究[J]. 自然科学进展,2005, 15(3):380-384.
YANG Yongrong, HOU Linxi, WANG Jingdai, et al. The study on particle size distribution in gas-solid fluidized beds based on AE measurement [J]. Prog. Nat. Sci. (China), 2005, 15(3):380-384.
[8] Cycil M, Charles E C. Shock and vibration handbook(5nd ed) [M]. China: Petrochemical Press Co. Ltd,2008:278-280.
[9] 刘刚,陈超,韩金良,等. 液固两相流声发射检测系统设计及实验评价[J]. 振动与冲击,2012, 31(22):178-182 .
LIU Gang, CHEN Chao, HAN Jinliang, et al. Acoustic emission device design and laboratory evaluation for fluid-solid two phase flow [J]. Journal of Vibration and Shock, 2012, 31(22):178-182.
[10] 曹翌佳,王靖岱,阳永荣. 声波信号多尺度分解与固体颗粒质量流率的测定[J]. 化工学报,2007, 58(6):1404-1410.
CAO Yijia, WANG Jingdai, YANG Yongrong. Multi-scale analysis of acoustic emissions and measurement of particle mass flowrate in pipeline [J]. Journal of Chemical Industry and Engineering (China), 2007, 58(6):1404-1410.
[11] 程智海,于江,翟永强,等.自动煤粉筛分装置[P].中国专利:CN206440532U, 2017-08-25.
[12] 张德丰.数字信号处理与应用[M].北京:清华大学出版社,2010,297-317.
[13] 张瑞,邓艾东,司晓东,等. 一种新的声发射信号消噪及故障诊断方法[J]. 振动与冲击, 2018,37(4):75-81.
ZHANG Rui, DENG Aidong, SI Xiao-dong, et al. A new method for acoustic emission signal de-noised and fault diagnosis [J]. Journal of Vibration and Shock, 2018, 37(4):75-81.
[14] 李兵,杜立志. 一种优化的小波包去噪方法在超声波信号降噪中的应用[J]. 城市建设理论研究:电子版,2012(30).
LI Bing, DU Lizhi. Application of an optimized wavelet packet denoising method in ultrasonic signal denoising [J]. Urban Construction Theory Research: e-edition, 2012(30).
[15] 章浙涛,朱建军,匡翠林,等. 小波包多阈值去噪法及其在形变分析中的应用[J]. 测绘学报,2014,43(1): 13-20 .
ZHANG Zhetao, ZHU Jianjun, KUANG Cuilin, et al. Multi-threshold wavelet packet de-noising method and its application in deformation analysis [J]. Acta Geodaetica et Cartographica Sinica, 2014,43(1):13-20.
[16] 纪跃波. 小波包的频率顺序[J]. 振动与冲击,2005, 24(3):96-98.
JI Yue-bo. Frequency order of wavelet packet [J]. Journal of Vibration and Shock,2005, 24(3):96-98.
[17] Guo M, Yan Y, Hu Y, et al. On-line measurement of the size distribution of particles in a gas–solid two-phase flow through acoustic sensing and advanced signal analysis [J]. Flow Measurement & Instrumentation, 2014, 40:169-177.
[18] 黄春燕,蔡小舒,苏明旭. 基于Hertz-Zener理论的声发射颗粒粒径测量[J]. 化工学报,2013, 64(4):1191-1197.
HUANG Chunyan, CAI Xiaoshu, SU Mingxu. Acoustic emission for particle size distribution measurement based on Hertz-Zener theory [J]. CIESC Journal, 2013, 64(4):1191-1197.
[19] 赵元喜,胥永刚,高立新,等. 基于谐波小波包和BP神经网络的滚动轴承声发射故障模式识别技术[J]. 振动与冲击,2010, 29(10):162-165.
ZHAO Yuanxi, XU Yonggang, GAO Lixin, et al. Fault pattern recognition technique for roller bearing acoustic emission based on harmonic wavelet packet and BP neural network [J]. Journal of Vibration and Shock, 2010, 29(10):162-165.
[20] 谢锋云,江炜文,陈红年,等. 基于广义BP神经网络的切削颤振识别研究[J].振动与冲击,2018,37(5) :65-70,78.
XIE Fengyun, JIANG Weiwen, CHEN Hongnian, et al. Cutting chatter recognition based on generalized BP neural network [J]. Journal of Vibration and Shock, 2018,37(5) :65-70,78.
[21] 傅荟璇,赵红.MATLAB神经网络应用设计[M].北京:机械工业出版社,2010,90-92.

PDF(973 KB)

Accesses

Citation

Detail

段落导航
相关文章

/