循环动荷载下泥化夹层累积变形特性研究

闫长斌1,徐晓1,姜晓迪1,张晓英2,陈书丽2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (11) : 280-287.

PDF(2272 KB)
PDF(2272 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (11) : 280-287.
论文

循环动荷载下泥化夹层累积变形特性研究

  • 闫长斌1,徐晓1,姜晓迪1,张晓英2,陈书丽2
作者信息 +

The accumulative deformation characteristics of mudded intercalations under cyclic dynamic loading

  • YAN Changbin1, XU Xiao1, JIANG Xiaodi1, ZHANG Xiaoying2, CHEN Shuli2
Author information +
文章历史 +

摘要

泥化夹层是诱发岩体工程失稳破坏的重要因素之一。为研究循环动荷载下泥化夹层的累积变形特性,深入分析主要影响因素,在黄河中游某大型水利枢纽工程勘探平硐采取试样,开展了不同工况条件下泥化夹层的动三轴试验研究。在考虑主要黏土矿物成分、黏粒含量、含水率、围压和频率等影响因素的基础上,根据试验成果,探求适合描述泥化夹层累积应变发展规律的理论模型,并基于动应力~应变关系研究了泥化夹层的动弹性模量特征。研究结果表明:(1)泥化夹层的累积应变发展规律具有破坏型特征,不符合稳定型累积应变特征,利用Monismith模型进行描述是合理的;(2)泥化夹层的动应力~应变曲线符合Hardin双曲线模型;(3)泥化夹层的累积应变随含水率、黏粒含量和频率的增大而增大,随围压的增大先减小后增大;(4)泥化夹层的动弹性模量随围压增大单调递增,随循环周次、含水率和频率的增大而单调递减;(5)主要黏土矿物成分为蒙伊混层时,泥化夹层的累积应变最大,动弹性模量随循环周次增加而衰减最快。

Abstract

The mudded intercalations are known to deteriorate engineering properties of layered rock mass. This work aimed to experimentally reveal the accumulative deformation characteristics and analyze the impact factors of mudded intercalations under cyclic dynamic loading. The specimens of mudded intercalations were collected from a geological adit of some large hydro project in the middle reaches of Yellow River. They were remolded and prepared for dynamic triaxial test under cyclic loading. Some key impact factors i.e. main clay mineral composition, clay content, water content, confining pressure and frequency were considered during dynamic triaxial tests with different conditions. A theoretical model was put forward for the cumulative strain description of mudded intercalations according to test results. The variation laws of dynamic elastic modulus with cyclic numbers were discussed based on the dynamic stress-strain curves. Research results show that the cumulative strain development laws of mudded intercalations have failure characteristics. They do not meet the stable cumulative strain characteristics. It is reasonable to describe the characteristics of cumulative strain by the Monismith model. The dynamic stress-strain curves accord with the Hardin hyperbolic model. The key impactors have great effects on the cumulative strain, such as cyclic numbers (positive), water content (positive), clay content (positive), frequency(positive), and confining pressure (negative) respectively. The dynamic elastic modulus is impacted by confining pressure (monotonously positive), cyclic time (monotonously negative), water content and frequency (monotonously negative) correspondingly. When the main mineral composition is mixed montmorillonite and illite, the cumulative strain of mudded intercalations reaches its maximum, and the dynamic elastic modulus decrease fastest.

关键词

泥化夹层 / 动三轴试验 / 累积应变模型 / 动弹性模量 / 影响因素

Key words

mudded intercalations / dynamic triaxial tests / cumulative strain models / dynamic elastic modulus / impact factors

引用本文

导出引用
闫长斌1,徐晓1,姜晓迪1,张晓英2,陈书丽2. 循环动荷载下泥化夹层累积变形特性研究[J]. 振动与冲击, 2020, 39(11): 280-287
YAN Changbin1, XU Xiao1, JIANG Xiaodi1, ZHANG Xiaoying2, CHEN Shuli2. The accumulative deformation characteristics of mudded intercalations under cyclic dynamic loading[J]. Journal of Vibration and Shock, 2020, 39(11): 280-287

参考文献

[1] XU W J., JIE Y X., LI Q B. Genesis, mechanism, and stability of the Dongmiaojia landslide, yellow river, China[J]. International Journal of Rock Mechanics & Mining Sciences, 2014, 67(2): 57–68.
[2]  王思敬, 张镜剑, 薛守义. 原状泥化夹层动力特性试验研究[C]. 水电科技论文集, 1990, 318–329.
WANG Si-jing, ZHANG Jing-jian, XUE Shou-yi. Test investigation on in-situ mudded interlayer dynamic properties[C]. Hydropower Science and Technology  Proceedings, 1990, 318–329.
[3]  薛守义, 王思敬. 小浪底工程中原状泥化夹层的动三轴试验[J]. 岩土工程学报, 1997, 19(2): 89–94.
XUE Shou-yi, WANG Si-jing. Dynamic triaxial test of the in-situ mudded intercalations in Xiaolangdi project[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(2): 89–94.
[4]  俞培基, 秦蔚琴, 王宏. 山体岩石泥化夹层的动力抗剪强度[J]. 水力发电学报, 1993, (1): 64–70.
YU Pei-ji, QIN Wei-qin, WANG Hong. Cyclic shear strength of weak layer in rock mass[J]. Journal of Hydroelectric Engineering, 1993, (1): 64–70.
[5] CHAI J C, MIURA N. Traffic-Load-Induced permanent deformation of road on soft subsoil [J]. Journal of Geotechnical and Geo-environmental Engineering, 2002, 128(11): 907–916
[6] MONISMITH C L, OGAWA N, FREEME C R. Permanent. Deformation characteristics of subgrade soils due to repeated loading[R]. Washington, D. C.: Transportation Research Board, 1975: 1–17.
[7] 臧濛, 孔令伟, 曹勇. 描述循环荷载作用下黏土累积变形的改进模型[J]. 岩土力学, 2017, 38(2): 435–442.
ZANG Meng, KONG Ling-wei, CAO Yong. An improved model for cumulative deformations of clay subjected to cyclic loading[J]. Rock and Soil Mechanics, 2017, 38(2): 435–442.
[8] 张勇, 孔令伟, 郭爱国, 等. 循环荷载下饱和软黏土的累积塑性应变试验研究[J]. 岩土力学, 2009, 30(6):1542-1548.
ZHANG Yong, KONG Ling-wei, GUO Ai-guo, et al. Cumulative plastic strain of saturated soft clay under cyclic loading[J]. Rock and Soil Mechanics, 2009, 30(6):1542-1548
[9] 张向东,刘家顺.循环荷载作用下风积土累积塑性变形试验研究[J]. 公路交通科技,2014, 31(3): 18–25.
ZHANG Xiang-dong, LIU Jia-shun. Experimental study on cumulative plastic deformation of aeolian soil under cyclic loading[J]. Journal of Highway and Transportation Research and Development, 2014, 31(3): 18–25.
[10] De Oliveira O M, Li P, Marinho F A M, et al. Mechanical Behaviour of a Compacted Residual Soil of Gneiss from Brazil under Constant Water Content Condition[J]. Indian Geotechnical Journal, 2016, 46(3): 299-308.
[11] Kumar S S, Krishna A M, Dey A. High Strain Dynamic Properties of Perfectly Dry and Saturated Cohesionless Soil[J]. Indian Geotechnical Journal, 2018, 48(3): 549-557.
[12] KENNEY T C. The influence of mineral composition on the residual strength of natural soils[C]. Proceedings of the Geotechnical Conference, Oslo, 1967, (1): 123–129.
[13] Li T, Tang X, Wang Z. Experimental Study on Unconfined Compressive and Cyclic Behaviors of Mucky Silty Clay with Different Clay Contents[J]. International Journal of Civil Engineering, 2019(10).
[14] Pandya S, Sachan A. Experimental Studies on Effect of Load Repetition on Dynamic Characteristics of Saturated Ahmedabad Cohesive Soil[J]. International Journal of Civil Engineering, 2019: 1-12.
[15] 王鑫, 沈扬, 王保光, 等. 列车荷载下考虑频率影响的软黏土破坏标准研究[J]. 岩土工程学报, 2017(z1), 32-37.
WANG Xin, SHEN Yang, WANG Bao-guang, et al. Failure criteria for soft clay subjected to frequencies under train loads[J]. Chinese Journal of Geotechnical Engineering, 2017(z1), 32-37.
[16] 冯光愈.葛洲坝坝基泥化夹层的抗剪强度和应力~应变特性[J]. 水文地质工程地质,1986,(3): 24–27.
FENG Guang-yu. Shear strength and stress-strain characteristics of weak Layer in dam foundation of Gezhouba[J]. Hydrogeology and Engineering Geology, 1986, (3): 24–27.
[17] ASTM D5311/D5311M – 13. Standard Test Method for Load Controlled Cyclic Triaxial Strength of Soil[S]. 2016.
[18] HARDIN B O, DRNEVICH V P.  Shear modulus and damping in soil measurement and parameter effect[J]. Journal of the Soil Mechanics and Foundation (Engineering Division), 1972, 98(6): 603-624.
[19] 边学成,卢文博,蒋红光,等.粉土循环累积应变和残余动模量的试验研究[J]. 岩土力学,2013, 34(4): 974–980.
BIAN Xue-cheng, LU Wen-bo, JIANG Hong-guang, et al. Experimental study of cumulative axial strain and residual dynamic modulus of silt soil[J]. Rock and Soil Mechanics, 2013, 34(4): 974–980.
[20] 蔡袁强, 赵莉, 曹志刚,等. 不同频率循环荷载下公路路基粗粒填料长期动力特性试验研究[J]. 岩石力学与工程学报, 2017, 36(5):1238-1246.
CAI Yuan-qiang, ZHAO Li, CAO Zhi-gang, et al. Experimental study on dynamic characteristics of unbound granular materialsunder cyclic loading with different frequencies[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(5):1238-1246.
 

PDF(2272 KB)

Accesses

Citation

Detail

段落导航
相关文章

/