为提高惯导设备隔离器的防护能力,设计了一种能够大幅度卸载任意方向冲击载荷的多杆并联隔离器,并选择能以小变形承受大载荷的碟簧作为弹性元件。同时,为分析隔离器的刚度特性及其对隔离器隔振、隔冲性能的影响,进行了准静态压缩实验、振动试验和冲击试验。研究发现,随着隔冲杆中碟簧数量增加,预紧力增大,弹性元件的准零刚度特性渐强,垂向及水平向隔振能力产生不同程度的削弱。在隔冲性能上,当准零刚度特性较为明显时,试验和仿真计算得到的加速度响应峰值更大,但随冲击载荷增加,隔离率趋于稳定。最后得出,当弹性元件具有较弱的准零刚度特性时,有利于保证隔离器在复杂冲击环境下,保持较好隔振、隔冲能力,为多杆并联隔离器的优化设计提供了参考。
Abstract
In order to improve the protective capability of isolator of inertial navigation equipment, a multi-element parallel isolator was designed, which can unload impact loads in any direction by a large margin, and a disc spring which can bear large loads with small deformation was selected as an elastic element. At the same time, quasi-static compression test, vibration test and impact test were carried out to analyze the stiffness characteristics of isolator and its influence on isolation performance. It is found that with the increase of the number of disc springs in a single spacer, the preload increases,and the quasi-zero stiffness characteristic of the elastic component is gradually stronger, and then the vertical and horizontal vibration isolation capabilities are weakened to varying degrees. In the study of the isolation performance, when the quasi-zero stiffness characteristics are more obvious, the peaks of the acceleration response obtained by the test and simulation are larger, but with the increase of the impact load, the isolation rate tends to be stable. Finally, when the elastic element has weak quasi-zero stiffness characteristics, it is beneficial to ensure that the isolator keeps good vibration isolation and shock isolation ability under complex impact environment, which provides a reference for the optimal design of multi- element parallel isolator.
关键词
隔离器 /
碟簧 /
准零刚度 /
隔冲性能
{{custom_keyword}} /
Key words
isolator /
Disc spring /
quasi-zero stiffness /
anti-shock performance
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 汪玉, 冯奇.舰船设备抗冲隔振系统建模理论及其应用[M]. 北京: 国防工业出版社, 2006.
WANG Yu, FENG Qi. Modeling theory and application of anti-seismic vibration isolation system for ship equipment [M]. Bei Jing: National Defense Industry Press, 2006.
[2] 钱按其, 嵇春艳, 王自力. 水下爆炸载荷作用下水面舰艇设备冲击环境预报方法研究[J]. 舰船科学技术, 2006, 28(4):43-47.
QIAN An-qi, JI Chun-yan, WANG Zi-li. Prediction method of shock environment for equipments on water ship under water explosion [J].Ship Science and Technology, 2006, 28(4) : 43-47.
[3] 汪玉. 实船水下爆炸冲击试验及防护技术[M]. 北京: 国防工业出版社, 2010.
WANG Yu. Impact Test and Protection Technology of Underwater Explosion of Ship [M]. Bei Jing: National Defense Industry Press, 2010.
[4] 沈荣瀛, 华宏星. 舰船机械设备冲击隔离技术研究进展[J]. 船舶力学, 2010, 20(5): 299-301.
SHEN Rong-ying, HUA Hong-xing. Advances in study on shock isolation of naval quipment [J]. Ship Mchanics, 2010, 20(5): 299-301.
[5] Hoque M E, Mizuno T, Ishino Y, et al. A three-axis vibration isolation system using modified zero-power controller with parallel mechanism technique [J]. Mechatronics, 2011, 21(6):1055-1062.
[6] Huang X , Liao Q , Wei S . Closed-form forward kinematics for a symmetrical 6-6 Stewart platform using algebraic elimination[J]. Mechanism & Machine Theory, 2010, 45(2):327-334.
[7] Preumonta A, Horodincaa M, Romanescua I, et al. A six-axis single-stage active vibration isolator based on Stewart platform [J]. Journal of sound and Vibration, 2007, 300(3),644-661.
[8] Afzalifar B , Lidström, Per, Nilsson K . Parametric damped vibrations of Gough-Stewart platforms for symmetric configurations[J]. Mechanism & Machine Theory, 2014, 80(4): 52-69.
[9] Tari H , Su H J, Hauenstein J D . Classification and complete solution of the kinetostatics of a compliant Stewart–Gough platform[J]. Mechanism & Machine Theory, 2012, 49(3): 177-186.
[10] 徐杭田, 单树军. 粘性阻尼在软特性刚度隔冲系统中的作用研究[J]. 振动与冲击, 2010, 29(2):196-198.
XU Hang-tian, SHAN Shu-jun. Effect of viscous damping in a soft stiffness shock isolation system [J] Journal of Vibration and Shock, 2010,29(2):196-198.
[11] 单树军, 何琳. 粘性阻尼在硬特性刚度隔冲系统中的作用[J]. 振动与冲击, 2008, 27(6): 96-98.
SHAN Shu-jun, HE Lin. Effect of Viscous Damping on A Hard Rigidity Shock Isolation System [J]. Journal of Vibration and Shock, 2008,27(6):96-98.
[12] 江国和, 沈荣瀛, 吴广明. 舰船设备冲击隔离系统优化设计计算[J]. 噪声与振动控制, 2003, 23(6): 25- 28.
JIANG Guo-he, SHEN Rong-ying, WU Guang-ming. Qptimal calculation on shock isolation of naval naval equipment [J]. Noise and Vibration Control, 2003,23(6):25- 28.
[13] 刘兴天, 黄修长, 张志谊, 华宏星. 激励幅值及载荷对准零刚度隔振器特性的影响[J]. 机械工程学报, 2013,49(6):90~94.
LIU Xing-tian, HUANG Xiu-chang, ZHANG Zhi-yi, HUA Hong-xing. Influence of excitation Amplitude and load on the characteristics of quasi-zero stiffness isolator [J]. Journal of Mechanical Engineering, 2013, 49(6): 90~94.
[14] 冯志壮, 钱峰等. 新型液弹隔振器设计与仿真[J]. 航空学报, 2017(38): 2-6.
FENG Zhi-zhuang, QIAN Feng, et al. Design and simulation for new fluid elastomer vibration isolator [J]. Acta Aeronautica et Astronautica Sinica 2017(38): 2-6.
[15] 徐道临, 张月英, 周加喜等. 一种准零刚度隔振器的特性分析与实验研究[J]. 振动与冲击, 2014, 33(11):209-213.
XU Dao-lin, ZHANG Yue-ying, ZHOU Jia-xi, et al. Characteristic analysis and experimental investigation for a vibration isolation with quasi-zero stiffness [J]. Journal of Vibration and Shock, 2014, 33(11): 209-213.
[16] 黄真. 论机构自由度[M]. 北京: 科学出版社,2011.
HUANG Zhen. On Degree of Freedom of Mechanism. Bei Jing: Science Press,2011.
[17] 路立军. 旋量理论概述[J]. 机械工程师, 2012(4): 40-41.
LU Li-jun. An overview of screw theory [J]. Mechanical Engineer, 2012(4): 40-41.
[18] 张春辉, 汪玉, 温肇东, 赵建华. 被动式stewart隔冲平台刚度特性研究[J].振动、测试与诊断,2015,35(2):290-291.
ZHANG Chun-hui, WANG Yu, WEN Zhao-dong, ZHAO Jian-hua. Research on stiffness characteristics of a passive stewart shock isolation platform [J]. Vibration Measurement& Diagnosis, 2015, 35(2): 290-291.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}