多孔材料对空腔噪声抑制效果研究

宁方立1,2,张畅通1,2,宁舜山1,2,刘哲1,2,韦娟3

振动与冲击 ›› 2020, Vol. 39 ›› Issue (11) : 31-37.

PDF(2668 KB)
PDF(2668 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (11) : 31-37.
论文

多孔材料对空腔噪声抑制效果研究

  • 宁方立1,2,张畅通1,2,宁舜山1,2,刘哲1,2,韦娟3
作者信息 +

Study on suppression effect of porous material on cavity noise

  • NING Fangli1,2, ZHANG Changtong1,2, NING Shunshan1,2, LIU Zhe1,2, WEI Juan3
Author information +
文章历史 +

摘要

研究马赫数为0.85的条件下,空腔的壁板使用多孔材料对空腔噪声和空腔流动的影响。利用大涡模拟(LES)来预测空腔内的流体流动,考虑到多孔材料对湍流的影响由渗透性损失和内部损失两部分组成,使用Ergun半经验公式来预测这两部分的影响,再结合LES湍流模型可以预测多孔材料内的流体流动。研究结果表明,空腔的前壁、后壁、底板使用多孔材料均可以改善空腔内的流场,并且可以抑制空腔噪声,其中空腔底板使用多孔材料对空腔噪声的抑制效果最为显著,可以使得空腔后部的总声压级降低3dB以上。

Abstract

The influence of porous material on cavity noise and cavity flow was studied at the Mach number of 0.85. Large eddy simulation (LES) was used to predict the fluid flow in the cavity. Ergun semi-empirical formula was used to predict the influence of these two parts, and LES could be combined to predict the fluid flow in porous materials. The results showed that the use of porous materials on the front wall, back wall and floor of the cavity can improve the flow field in the cavity and suppress the cavity noise; The use of porous materials in the cavity floor has the most significant effect on noise suppression of the cavity, which can reduce the total sound pressure level at the back of the cavity by more than 3dB.

关键词

多孔材料 / 空腔噪声 / 空腔流动 / 大涡模拟 / Ergun半经验公式 / 总声压级

Key words

porous material / cavity noise / cavity flow / Large eddy simulation / Ergun semi-empirical formula / the total sound pressure level

引用本文

导出引用
宁方立1,2,张畅通1,2,宁舜山1,2,刘哲1,2,韦娟3. 多孔材料对空腔噪声抑制效果研究[J]. 振动与冲击, 2020, 39(11): 31-37
NING Fangli1,2, ZHANG Changtong1,2, NING Shunshan1,2, LIU Zhe1,2, WEI Juan3. Study on suppression effect of porous material on cavity noise[J]. Journal of Vibration and Shock, 2020, 39(11): 31-37

参考文献

[1] 周方奇, 杨党国, 王显圣,等. 前缘直板扰流对高速空腔的降噪效果分析[J]. 航空学报, 2018, 39(4).
ZHOU F Q, YANG D G, WANG X S, et al. Effect of leading edge plate of high speed cavity noise control[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4) (in Chinese).
[2] ROBERTS D A, MACMANUS D G, JOHNSON R A, et al. Passive Attenuation of Modal Cavity Aeroacoustics Under Supersonic and Transonic Conditions[J]. AIAA Journal, 2015, 53(7):1861-1877.
[3] LAWSON S J, BARAKOS G N. Assessment of Passive Flow Control for Transonic Cavity Flow Using Detached-Eddy Simulation[J]. Journal of Aircraft, 2009, 46(3):1009-1029.
[4] SHAW L, CLARK R, TALMADGE D. F-111 generic weapons bay acoustic environment[J]. Journal of Aircraft, 2012, 25(2):147-153.
[5] HUANG X, ZHANG X. Streamwise and spanwise plasma actuators for flow-induced cavity noise control[J]. Physics of Fluids, 2008, 20(3):15.
[6] YUGULIS K, HANSFORD S, GREGORY J W, et al. Control of High Subsonic Cavity Flow Using Plasma Actuators[J]. AIAA Journal, 2015, 52(7):1542-1554.
[7] JONG A D, BIJL H. Corner-Type Plasma Actuators for Cavity Flow-Induced Noise Control[J]. AIAA Journal, 2014, 52(1):33-42.
[8] 杨党国, 吴继飞, 罗新福. 零质量射流对开式空腔气动噪声抑制效果分析[J]. 航空学报, 2011, 32(6):1007-1014.
YANG D G, WU J F, LUO X F. Investigation on Suppression Effect of Zero-net-mass-flux Jet on Aerodynamic Noise Inside Open Cavities[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6):1007-1014 (in Chinese).
[9] SHETA E F, HARRIS R E, LUKE E A, et al. Loads and Acoustics Prediction on Deployed Weapons Bay Doors[C]// AIAA Applied Aerodynamics Conference. 2017.
[10] G. J. M. LOUPY, G. N. BARAKOS, N. J. TAYLOR. Cavity Flow over a Transonic Weapons Bay During Door Operation[J]. Journal of Aircraft, 2018:1-16.
[11] WILCOX F J. Passive venting system for modifying cavity flowfields at supersonic speeds[J]. AIAA Journal, 1988, 26(3):374-376.
[12] KIM I, CHOKANI N. Navier-Stokes study of supersonic cavity flowfield with passive control[J]. Journal of Aircraft, 1992, 29(2):217-223.
[13] 李红丽, 庞彦宾, 侯峰,等. 壁面声阻抗抑制空腔噪声数值仿真研究[J]. 强度与环境, 2017, 44(3):46-52.
LI H L, PANG Y B, HOU F, et al. Numerical investigation of suppressing cavity noise based on wall impedance boundary[J]. STRUCTURE & ENVIRONMENT ENGINEERING, 2017, 44(3):46-52.
[14] LAI H X, LUO K H. A Conceptual Study of Cavity Aeroacoustics Control Using Porous Material Inserts[J]. Flow Turbulence & Combustion, 2008, 80(3):375-391.
[15] 赖焕新, 周邵萍, 苏永升,等. 空腔流动的大涡模拟及气动噪声控制[J]. 工程热物理学报, 2008, V29(2):228-232.
LAI H X, ZHOU S P, SU Y S, et al. LARGE-EDDY SIMULATION AND CONTROLLING OF NOISE IN CAVITY[J]. JOURNAL OF ENGINEERING THERM-
OPHYSICS, 2008, V29(2):228-232(in Chinese).
[16] SAMPATH P, SINHAMAHAPATRA K P. Numerical analysis of characteristic features of shallow and deep cavity in supersonic flow[J]. International Journal of Computational Fluid Dynamics, 2016, 30(3): 231-255.
[17] SUN M B, WANG H B, CHEN T, et al. Parametric study on self-sustained oscillation characteristics of cavity flameholders in supersonic flows[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2011, 225(6): 597-618.
[18] DRIKAKIS D. Advances in turbulent flow computations using high-resolution methods[J]. Progress in Aerospace Sciences, 2003, 39(6):405-424.
[19] ERGUN S. Fluid flow through packed columns[J]. Chemical Engineering Progress, 1952, 48(2): 89-94.
[20] MACDONALD I F, EL-SAYED M S, MOW K, et al. Flow through porous media-the Ergun equation revisited[J]. Industrial & Engineering Chemistry Fundamentals, 1979, 18(3): 199-208.
[21] 宁方立,宁舜山,石旭东,刘哲,等. 可变形状空腔噪声的数值仿真研究[J]. 振动与冲击, 2018,37(19):231-238+258.
NING F L, NING S S, SHI X D, et al. Numerical simulation study on deformable cavity noise[J]. JOURNAL OF VIBRATION AND SHOCK, 2018,37(19):231-238+258.
[22] Chen X, Sandham N D, Zhang X. Cavity flow noise predictions[R]. Final Report for MSTARR DARP, Southampton: University of Southampton, 2007.
[23] 王济平. 多孔泡沫材料强化传热与流阻特性研究[D]. 重庆大学, 2014.
WANG J P. Study on Heat Transfer Enhancement and Flow Resistance Characteristics of Porous Foams[D]. Chongqing University, 2014.
[24] 张新铭, 凌娅, 王济平,等. 基于Ergun方程的石墨泡沫内流动阻力研究[J]. 炭素技术, 2011, 30(5):17-20.
ZHANG X M, LING Y, WANG J P, et al. Study of the flow resistance characteristics in graphite foam based on Ergun equation[J]. CARBON TECHNIQUES, 2011, 30(5):17-20.
[25] 王济平, 张新铭, 王龙. 随机孔径对非均质多孔泡沫材料渗透性影响的数值模拟[J]. 机械工程材料, 2014, 38(11):95-98.
WANG J P, ZHANG X M, WANG L. Numerical Simulation on Permeability of Random Pore-diameter Influence of Heterogeneous Porous Foams[J]. MATERIALS FOR MECHANICAL ENGINEERING, 2014, 38(11):95-98.

PDF(2668 KB)

Accesses

Citation

Detail

段落导航
相关文章

/